Hostess 186™ 4
Hostess 186™ 8

Programmer’s Reference

Hostess 186 Programmer’s Reference

First Edition, February 1992
Revised, April 1992

Copyright © 1992, COMTROL Corporation. All Rights Reserved.

COMTROL Corporation makes no representations or warranties with regard to the
contents of this manual or to the suitability of the COMTROL Hostess 186 4 and/or the
COMTROL Hostess 186 8 controller for any particular purpose.

COMTROL Corporation reserves the right to make changes to the COMTROL Hostess
186 4 and/or the COMTROL Hostess 186 8, and to revise the information about the
products contained in this manual without an obligation to notify any persons about
such revisions or changes.

If you have any questions or comments about this manual or any COMTROL product,
please send your inquiries to:

COMTROL CORPORATION COMTROL Europe Ltd.
2675 Patton Road The Courtyard Studio, Grange Farm
P.O. Box 64750 Station Road
St. Paul, Minnesota 55164 Launton, Bicester
ISA Oxfordshire, OX6-0EE England

Telephone: 1-800-926-6876, (612) 631-7654 (US), or (44) 869-323-220 (UK).
FAX (612) 631-8117 (US), (44) 869-323-211 (UK)

Trademarks

The COMTROL logo, COMTROL Hostess 186 SERIES, COMTROL Hostess 186 4, and COMTROL
Hostess 186 8 are of COMTROL C; ion. COMTROL s a registered trademark of
COMTROL Corporation.

and/or d of their

Product names mentioned herein may be
respective companies.

1/0 Addresses

Hostess 186 Internal I/0 Addresses
The table that follows shows the internal VO addresses for the Hostess 186’s devices.

Table 13. Hostess 186 internal VO addresses.

Device 170 Address: | Device 1/0 Address:
Interrupt control register OFF28h
Timer 0 count register FF50h Timer 1 count register FFS58h
SCC portd (Hostess 186 port1) 0004h SCC port4 (Hostess 186 ports) 0104h
command register command register
SCC port0 (Hostess 186 port) 0006h SCC porté (Hostess 186 port) 0106h
data register data register
SCC portt (Hostess 186 porte) 0000h SCC port5 (Hostess 186 porte) 0100h
command register ccommand register
3CC portt (Hostess 186 port) 0002h SCC pori5 (Hostess 186 porte) 0102h
data register data register

port2 (Hostess 186 port3) 0084h ST port6 (Fostess 186 port7) 0184h
command register command register
8¢C port2 (Hostess 186 port3) 0086h CC port6 (Hostess 186 port7) 0186h
data register data register
SCC port3 (Fostess 186 portd) 0080h 'SCC port7 (Hostess 186 porid) 0180h
command register command register
SCC port3 (Hostess 186 portd) 0082h SCC port7 {Hostess 186 ports) 0182h
data register data register
Modem status register 0200h

CHAPTER 6 - Hostess 186 Dual-port Memory

Setting the System Computer’s Dual-port Memory Addresses

Writing to the control registers sets the dual-port memory addresses in the system’s
address space. The controller reserves a 16, 32, 64, or 128 Kbyte block of addresses
starting with the address set by the control registers. Addresses are in the range of
13 to 16 Mbytes (D00000 to FE0000h), and under 1 megabyte (080000 to 0F0000h).
Table 14 shows the popular memory addresses found under one megabyte of

memory.
Table 14. Under one megabyte memory addresses.

. Controller Value for Control Value for Control Valid System
Memory Register # 2 Register # 1 Bits Window Sizes
Address and Bits 0 to 7 6and 7 (set with Control

| Offset SD7 to SDO) SD7 to SD6) Register #1
000:0000 08h 00h 16K, 32K, 64K
000:4000 08h 0lh 16K
000:8000 08h 02h 16K, 32K
000:C000 08h 03h 16K
000:0000 09h 00h 16K, 32K, 64K
000:4000 0%h 0lh 6K
000:8000 09h 02h 6K, 32K
000:C000 09h 03h 6K

A000:0000 0Ah 00h 6K, 32K, 64K

2000:4000 0Ah 01lh 16K

2A000:8000 0Ah 02h 16K, 32K

A000:C000 0Ah 03h 16K

B000:0000. 0Bh 00h 16K, 32K, 64K

B000:4000 0Bh 0lh 16K

B000:8000 0Bh 02h 16K, 32K

B000:C000 0Bh 03h 16K

€000:0000 0Ch 00h 16K, 32K, 64K
€000:4000 0Ch 0lh 16K
€000:8000 och 02h 16K, 32K
€000:C000 0Ch 03h 16K

D000:0000 0Dh 00h 16K, 32K, 64K

D000:4000 0Dh 0lh 16K

D000:8000 0Dh 02h 16K, 32K

D000:C000 0Dh 03h 16K

E000:0000 OEh 00h 16K, 32K, 64K

Dual-port Memory

Table 15. Above one megabyte memory addresses.
Address: Value for Value for
Control Control
Register #2, | Register #1,
Data bits Data bits
SD7t0 SD0: | SD7 to SD6:
F00000h OF0Oh 30h
£20000h 0F2h 30h
F40000h O0F4h Oh
F60000h OF6h Oh
F80000h OF8h Oh
FA0000h 0FAh Oh
FC0000h QFCh 0.
FE0000h OFEh 30h
E00000h 0EQh Oh
E20000h 0E2h oh
E40000h 0E4h Oh
E60000. OE6h Oh
E80000: 0E8h Oh
EA0000h QEAh 30h
EC0000h 0ECh 30h
EEQ000h OEEh 30h
D00000h 0DOh Oh
D20000h 0D2h Oh
D40000h 0D4h 0.
D60000h 0D6h Oh
D80000h 0D8h Oh
DA00QOh 0DAh Oh
DCO000h 0DCh Oh
DEQ00Oh ODEh 30h

Dual-port Memory

Dual-port Memory Map

Of the 128 Kbytes of dual-port memory on the Hostess 186, more than 124 Kbytes
are available for control programs. Table 16 shows how dual-port memory is
mapped out.

Table 16. Hostess 186 memory map.
System Computer | Hostess 186
Memory Memory
Address: Address: Description: Length:
Base + 10080h [10080h unused FF80h bytes
Base + 10000h [10000h firmware data area 80h bytes
Base + CO0h 00c00h unused F400h bytes
Base + 400h 00400h firmware work space 800h bytes
Base* + 0 00000h interrupt vector table 400h bytes

Base memory address in the system computer's memory space, using a 128K window.

The lower 400h bytes are reserved for the interrupt vector table. The firmware uses
from 400h to COOh for miscellaneous work space.

The 80h bytes from 10000h to 10080h are called the firmware data area. The
firmware stores information about the controller in this area. The rest of the unused
memory is available for control programs to use.

Dual-port Memory

How the system sees the Hostess 186’s memory.
(This illustration installs the Hostess186 above the first megabyte at the system base
memory address F00000.)
F20000
00000
A A
4 / Unused /
100000
£0000 BH%\SA F10080
F10000 imware data area
Installable]
cooog | ROM w
Video 9-">,
A0000 | buffers Unused 2
2 -
X
S Fo0C00
=
Séﬂiﬂm Firmware work space
F00400
Interrupt vector table
00000 F00000
Figure 12. How the system “sees” the Hostess 186's local dual-port RAM
(128K window).

Dual-port Memory

How the Hostess 186 sees its own memory.
(The Hostess 186 has128K of local RAM.)
A Firmware EPROM FFFFF
)
X
<
o
(=
20000
{ o K
irmware work space
Ioteriar vector tale. | 00000
Normal addressing

Figure 13. How the Hostess 186 “sees” its own RAM.

Dual-port Memory

Firmware Data Area Map

The firmware data area located at controller memory address 10000h is 80h bytes
long. As the firmware executes, the data area fills with the information listed in
Table 17.

Table 17. Firmware data area map.

Offset _ Description Length
Oh interaction flag, 2h bytes
55AAN = controller active
2h boot flag, 2h bytes
0000h = hard boot
FFFFh = soft boot
4h old configuration map, 2h bytes
0000h = not used now
6h firmware release number 8h bytes
Eh open for control program release number 8h bytes
16h unused 4h bytes
Ah local RAM map, one bit set per 64K. 2h bytes
Ch unused
Eh SCC port map, one bit set per port found 4h bytes
2h identification number, 4h bytes
00000h = Hostess 186
26h invalid interrupt field 4h bytes
2Ah reserved for future use 56h bytes

At offset Oh, the “interaction flag” equals 55AAh when the controller is functioning
properly.

At offset 2h, the “boot flag” equals 0000h when the system powers up and changes
to FFFFh when the system reboots without powering down.

At offset 4h, the two-byte “old config map,” is not used, but space is allocated so the
firmware data area is compatible with the firmware data area of other COMTROL
controllers.

At offset 6h, the “firmware release number” is an ASCII string.

At offset Eh, eight bytes are open for an ASCII string that identifies the control
program release.

Dual-port Memory

At offset 22h, the “identification number” for the Hostess 186 is 00000h.

At offset 26h, the “invalid interrupt field” marks any spurious interrupts that come
into the interrupt controller. The firmware recovers from spurious interrupts, so the
control program does not have to handle it.

The remaining 56h bytes in the firmware data area are reserved for future use.

Dual-port Memory

CHAPTER 7 - Intetrupts

Interrupting the System Processor

The Hostess 186 controller can use IRQ 3, 4, 5, 9, 10, 11, 12, or 15. A system write to
the control register #4 sets the IRQ that the Hostess 186 controller uses to interrupt
the system processor.

The Hostess 186’s control program interrupts the system processor on the IRQ line
by writing 0008h to the IO address EF60h. After a two-microsecond delay, you must
clear the interrupt by writing 0000h to address EF60h. (The delay is simple; execute
three consecutive jmp short $+2 statements.)

Here is an example of setting and clearing an interrupt to the system processor:

mov dx,ef60h interrupt address

mov ax,0008h ; ax = value to set interrupt low
out dx,ax ; set the interrupt

jmp short $+2 ; delay

jmp short $+2 ; delay

Smp short $+2 ; delay

mov. ax,0000nh ; ax = value to clear interrupt high
out dx,ax ; clear the interrupt

Note that multiple Hostess 186 controllers may share the same IRQ line. To share an
IRQ, the interrupt service routine (ISR) on the system computer must include code
that identifies which controller generates the interrupt.

Interrupting the Controller

By writing to the 1/0 base+2 address, the system processor interrupts the controller
on the 80186’s interrupt 3 line. This generates an interrupt vector type 0Dh. The
control program’s interrupt service routine (ISR) must clear the interrupt after
processing it. The interrupt is cleared by writing 8000h to the “interrupt control
register” at address FF22h.

Here is an example of the device driver setting an interrupt to the controller:

outp(0x218+2,0); /* write anything to io_base+2 */

Interrupts

Here is an example of the control program clearing the interrupt:

mov dx,0££22h ; dx = interrupt control register
mov ax, 08000h ; ax = 08000h to clear the interrupt
out. dx,ax ; clear the interrupt

iret ; return from interrupt

NOTE: The firmware uses this interrupt to invoke the control program at address
1000:80. Change the interrupt vector table entry 0Dh before you use this interrupt.

Writing an Internal Interrupt Service Routine

The control program must have interrupt service routines (ISRs) for all interrupts it
uses. The interrupt vector table stores the address of the interrupt service routine,
s0 when the interrupt comes in, execution immediately jumps to the correct
interrupt service routine.

The interrupt service routine processes the interrupt, clears the interrupt, and
executes the iret instruction to return from the interrupt. The processing of the
interrupt is specific to the control program. To clear the interrupt, write 08000h to
the “interrupt control register” at address 0FF22h.

Do not disable and enable other interrupts with the c1i and sti instructions while
in an interrupt service routine. Doing so can let another interrupt come in before
the current interrupt is cleared.

Here is an example of a timer interrupt service routine:
timer_isr proc
push ax ; save registers

push dx

; do internal processing

mov dx,0££22h ; dx = interrupt control register
mov ax, 08000h ; ax = value to clear interrupt
out dx,ax ; clear the interrupt

pop dx ; restore registers

pop ax

iret ; return from the interrupt routine

timer_isr endp

Interrupts

Initializing Hostess 186 Interrupt Vectors

Each interrupt has a vector type number. The address of the interrupt service
routine requires four bytes and is placed in the interrupt vector table at
(“vector_type” * 4). The two-byte offset address is stored first in the interrupt vector
table, followed by the two-byte segment address.

Here is an example of storing the SYSTEM interrupt service routine address in the
interrupt vector table:

xor ax,ax ; zero ax
mov es,ax segment of vector table = 0
mov bx,0dh*4 get vector table location
mov ax,offset system isr offset of isr

. mov es:([bx],ax store in vector table
mov ax,cs segment of isr routine
mov es:[bx+2],ax store in vector table

Table 18 lists the interrupts the Hostess 186 can use, their vector types, interrupt
vector table locations, the possibility that the control program can modify the vector,
and whether hardware or software generates the interrupt.

Table 18. Hostess 186 interrupt vector types and locations.

Hostess 186 Vector Vector ~ Control Hardware/ Comments:
Interrupt: type table program Software
number: location: modifiable: generated:
NMI 2h 8h no HW
DEBUGGER 20h 80h no /W
RAM QUERY 21h 84h no /W
DEBUG PORT 22h 88h no W
CONFIG QUERY 23h 8Ch no /W
TURBO_DEBUGGER 27h 9Ch no W
REMOTE
8530 bank 1 0Ch * no H/W
SYSTEM 0Dh 34h yes HW Generated by the
(/0 +2 write) system to the
Hostess 186.
TIMER 0 8h 20h yes HW
TIMER 1 12h 48h yes HW
IRQ7 37h C8h no HW
(Catches invalid
in(enug(s
SCC base 80h 200h ves HW

Interrupts

Hostess 186 Interrupt Vectors Defined

The firmware sets up twelve interrupt vectors, eight of which should not be changed
and four that can be modified by the control program.

The external NMI (non-maskable interrupt, type 2h) occurs only on a “software
development” controller; one equipped with the reset and debug switches. The
debug switch triggers an NMI, which invokes the debugger.

The software DEBUGGER interrupt (type 20h) invokes the firmware debugger.

The software RAM_QUERY interrupt (type 21h) returns the first segment that is open
for control program use in the AX register. This may be used to determine where to
load the control program.

The software DEBUG_PORT interrupt (type 22h) changes the firmware’s debugging
port (the first serial port) to the one specified in the AL register.

The software CONFIG_QUERY interrupt (type 28h) returns information in the
firmware data area about the number of ports and amount of dual-ported RAM on
the controller. This depends on the value of the AL register on entry:

If the AL register = 0 on entry, the “old config map” is returned in the AX
register.

If the AL register = 1 on entry, the “dual-ported RAM map” is returned. The low
word is in the AX register and the high word is in the BX register.

If the AL register = 2 on entry, the “SCC port map” is returned.
The low word is in the AX register and the high word is in the BX register.

The TURBO_DEBUGGER_REMOTE interrupt (type 27h) is used to invoke the remote
Borland® Turbo Debugger™ kernel on the Hostess 186 controller.

The 8530 interrupts (type 0Ch) are cascaded from the SCC interrupt. These
interrupts should not be used nor modified. Furthermore, these interrupts do not
use the vector table entries of the Hostess 186. For more information on SCC
interrupt type, the section “Finding the SCC Interrupt Vector Types” in this chapter.

When the system processor writes to the “I/0 base+2” address to interrupt the
controller, this generates the SYSTEM interrupt (type 0Dh). This vector should be
replaced with the control program’s vector to process system interrupts.

Interrupts

The TIMER 0 interrupt (type 08h) is the interrupt that timer 0 generates. This vector
should be replaced with the control program’s vector if the control program uses
timer 1.

The TIMER 1 interrupt (type 12h) is the interrupt that timer 1 generates. This vector
should be replaced with the control program’s vector if the control program uses
timer 1.

The IRQ7 interrupt (type 37h) is a catch-all interrupt that collects all invalid
interrupts.

The SCC_base interrupts are placed every eight bytes (for every two type numbers)
in the interrupt vector table, beginning with type 80h. The control program must
initialize the SCC interrupts, because the firmware does not initialize these
interrupts.

Interrupts

The Interrupt Mask Register

The 80186 has an Interrupt Mask Register (IMR) that is similar to the Intel 8259
mask register. Use this register to individually mask a hardware interrupt request.
Write a one (1) to one of the data bits to set the mask for one of the interrupt
channels (0 through 7). Write a zero (0) to reset that interrupt channel. As Figure
14 shows, several of the interrupt channels are reserved.

/O Address: 5 6 5 4 3 2 1 0
FF28n | a3 [2. [11 [10 [pn [o [0. [rives]
Figure 14. Interrupt mask register format.

The interrupt mask is:

Meaning:

Mask reset
Mask set

If you mask an interrupt channel, this does not affect other how the other channels
operate. Table 19 lists which hardware interrupt is associated with which IMR bit. -

Table 19. 80186 hardware interrupts and their respective IMR bits.

Hardware interrupt: _ Bit:
TIMER [1]
reserved 1
feserved (DMA 0) 2
reserved (DMA 1) 3
8530 SCC's 4
SYSTEM 5
[os2wie) |
reserved 6
(interrupt acknowledge)
reserved
(interrupt acknowledge)

When the controllers is powered up, the value set in the interrupt mask register is
00CDh. This enables the SCC interrupts and the SYSTEM interrupt.

Interrupts

Finding the SCC Interrupt Vector Types

Each SCC port can generate four types of interrupts: transmit buffer empty, receive
character available, receive special condition, and external/status change.

The SCC interrupts are daisy-chained. You should set VIS=1, NV=0, and
STATUS_HIGH/STATUS_LOW=0 in write register 9 of the SCC. When the processor
requests an interrupt vector, the SCC places the interrupt vector specified in write
register 2 on the bus. This vector is modified to contain status information in bits 1,
2, and 3 that tells the type of interrupt that was generated. Table 20 shows how the
vector is modified.

Table 20. SCC vector modification.
Interrupt
Vector (binary) Type of Interrupt
xxxx0000 transmit buffer empty — even numbered port
xxxx0010 external/status change — even numbered port
xxxx0100 receive character available — even numbered port
xxxx0110 special receive condition — even numbered port
xxxx1000 transmit buffer empty — odd numbered port
xxxx1010 external/status change — odd numbered port
xxxx1100 receive character available — odd numbered port
xxxx1110 special receive condition — odd numbered port

The SCC interrupt vectors are placed every eight bytes in the interrupt vector table.
Derive the interrupt vector table location by multiplying the modified vector by 4.
As an example, the interrupt vector table’s location for the receive character
available interrupt (for port 5) is:

base vector = AOh = 10100000 binary
modified bits = xxxx110x
therefore,

modified vector = 10101100 = 0ACh

interrupt vector
table location = OACh * 4 = 2BOh

Table 21 shows the interrupt vector table’s locations for all SCC interrupts.

Interrupts

Table 21._SCC port interrupt vectors.

Vector table addresses

Base Transmit External/ Receive Special

Vector | buffer Status character receive
Port: pe: mpty: change: ilable: _condition:
1 Oh 20h 228h 230h 38h
2 Oh 00h 208h 210h 18h
3 Oh 60h 268h 70h 78h
4 0. 40h 48h 50h 58h
5 A0, AOh A8h BO. B8h
6 AO. 80h 88h 90h 98h
7 B0Oh EOh 2E8h FOh F8h

BOh COh 2C8h D0Oh 2D8h

COh 20h 328h 30h 338h
0 COh 00h 308h 10h 318h
1 DOh 60h 368h 70h 378h
2 DOh 40h 348h 50h 358h

EO0h A0h 3A8h BOh 3B
4 EOh 80h 388h 390h 98h

FOh EQh 3E8h 3F0h F8h
6 FOh COh 3C8h 3D0h D8h

The following example, from the CPCSTART . ASM header file, initializes the SCC
interrupt vectors. Each vector requires 4 bytes. Every second vector is not used, as
the SCC modifies bits 3, 2, and 1 of the base vector type, but does not modify bit 0.
The unused vectors are already initialized to point to an “invalid interrupt ISR” by
the firmware, so they are not altered here:

;Name: vector_init

JEntr AX = base vector ype

JExit: Nothing

iRegisters AX, BX, CX, SI, DI and ES altered

vector_init proc

shl ax,1 icalculate interrupt vector address
shl ax,1
mov di,ax
xor ax, ax
mov es,ax JES:DI=> destination
mov si,offset vector_tbl ;SI=> vector table
mov cx, [si]
add si,2
shr cx,1 iCX = table length (words)
mow he.re ‘eatin sammant addrass
Interrupts

7SCC Interrupt Vector Table - contains addresses of interrupt service routines.

vector_tbl equ $
dw vector_tbl_end-$-2 ;jtable length
dw line0l_TBE
dw line01_ESC
aw line01_RCA
aw line01_SRC
dw 1ine00_TBE
aw 1ine00_ESC
aw 1ine00_RCA
dw 1ine00_SRC
dw line03_TBE
dw 1ine03_ESC
dw 1ine03_RCA
dw 1ine03_SRC
dw 1ine02_TBE
dw line02_ESC
dw 1ine02_RCA
dw 1ine02_SRC
dw line05_TBE
aw 1ine05_ESC
aw 1ine05_RCA
dw 1ine05_SRC
dw line04_TBE
aw 1ine04_ESC
dw line04_RCA
aw 1ine04_SRC
line07_entry label word
dw 1ine07_TBE
aw 1ine07_ESC
dw 1ine07_RCA
aw 1ine07_SRC
aw 1ine06_TBE
aw 1ine06_ESC
aw 1ine06_RCA
aw 1ine06_SRC

vector_tbl_end equ $

Interrupts

CHAPTER 8- Timers

The Intel 80186 has three general purpose timers; however, the Hostess 186 uses
timer 2 for controller refresh, so timer 2 is limited in its use. (You can program
timer 2’s output as a prescaler for the two available timers.)

You control the timers through offsets to an VO control block. The internal VO
address for the timer’s control block is FF0Oh through FFFFh. Each timer has four
registers that regulate how the timer’s operate. Programmers can read or write to
these registers regardless of the timer’s operation. These 16-bit registers appear in
Table 22:

Table 22. Timer registers.

Timer Timer 0 | Timer 1
Register: * offset offset
(hex): (hex):
Timer count register 50h 58h
Maximum count (A) 52h S5Ah
Maximum count (B) 54h 5Ch
Timer mode/control word | 56h SEh
Source: Intel

The timer count register holds the incremental count value used by the timer to
compare with the maximum count registers. The microprocessor can read or write
to this register at any time.

The maximum count registers A or B holds the maximum count value the timer
compares with the value accrued in the timer count register. You can write the
maximum count value to this register while the timer is operating. The maximum
count value can range from 0 to 2!¢ (65,536).

The timer mode/control word is a 16-bit word with reserved bits that manage the
timer’s operations. The format for this register is:

Bit: 1

15 14 | 13 | 12 jthrough| 5 4 3 2 1 0
6

Function:

EN INH | INT | RIU 0 MC {RTG| P | EXT|ALT| CONT

Source: Intel

Timmira 18 Rawmoat of the timar’e mada/eantral ward register

Where:

EN - controls the RUN or HALT status of the timer.

INH - sets particular updating of the EN bit.

INT - lets the timer generate interrupts

RIU - determines which maximum count register to use to compare to the timer
count value (0 = register A, 1 = register B).

MC ~ states that the timer reached its maximum count value.

RTG - indicates the status of the timer’s external pin if the timer is set for
internal clocking (the EXT bit is set to 0).

P — sets the timer input clock at 2 MHz (P = 0) or to use timer 2’s output as
timer input (P = 1).

EXT - sets the timer either for internal clocking (EXT = 0) or external clocking
(EXT = 1).

ALT - indicates which maximum count register to use to compare the timer
count with.

CONT — sets the timer to operate continuously.
The Intel 80186’s timers are extremely flexible. For an in-depth explanation of how

timers function, and other examples of their use, please refer to Intel’s 80186/ 188,
80C186/C188 Hardware Reference Manual.

Enabling Timers
To enable a timer, you first set the count value, then set the control word.
You set the count register by writing the frequency to the appropriate “timer count

register.” Table 23 lists count register addresses.
Table 23. Timer count register addresses.

Timer: Count
register
address:

0 FF50h

1 FE58h

The following formulae calculate the timer’s count register value (in decimal):
¢ For P bit set to 0, the input clock equal to one-quarter the CPU clock (2 MHz).
count value = 2*
desired frequency

¢ For P bit set to 1, the input clock is the output of Timer 2.
count value = 32,258

Timers

Table 24. Timer frequencies.

Psetto0: Psetto1:
Frequency | Count Register Frequency | Count Register
Times per Hexadecimal Times per Hexadecimal
Second Value Second Value
30 FFFF 0.5 FFEF
40 €350 1 7E02
50 9c40 5 1933
60 8235 10 0C99
70 6F9B 20 064C
80 61A8 30 0433
90 56CE 40 0326
100 4E20 50 0285
110 4705 60 0219
120 4112 70 01cC
130 3C18 80 0193
140 37CD 90 0166
150 3415 100 0142
110 0125
200 2710 120 010C
130 00F8
140 00E6
150 00D7
200 0021

To set the control word, write the appropriate value to the control word register.
The control word addresses appear in Table 25.
Table 25. Timer control word register addresses.

Timer: Control
word
address:
0 FF56h
] FESEh

Here is an example of setting timer 1 to a frequency of 20 times per second, using
the output of timer 2 as the clock input:

mov dx,££5ah ; dx = timer 1 max count register A
mov ax,064Ch ; 20 times per second
out dx,ax ; write frequency out

Timers

Disabling Timers

Disable the two general-purpose timers by writing the value 0 (zero) to the timer’s
control word register.

Here is an example that clears timer 0 and timer 1:

mov dx, ££52h ; dx = timer 0 max count register A
mov ax,0000h ; zeros

out dx,ax ; write zeros out

mov dx,££54h ; dx = timer 0 max count register B
mov ax,0000h ; zeros

out dx,ax ; write zeros out

mov dx, ££56h ; dx = timer 0 control word register
mov ax,0000h ; zeros

out dx,ax ; write zeros out

mov dx,££5ah ; dx = timer 1 max count register A
mov ax,0000h ; zeros

out dx,ax ; write zeros out

mov dx, ££5ch ; dx = timer 1 max count register B
mov ax,0000h ; zeros

out dx,ax ; write zeros out

mov dx,£fSeh ; dx = timer 1 control word register
mov ax,0000h i zeros

out dx, ax ; write zeros out

CHAPTER 9 - Serial Communication Controller Port Communication

Talking to the SCC Ports

Each SCC has two ports on it, and each port has a command register and a data
register. The command register sets up the communication parameters (baud rate,
parity, data bits, stop bits, flow control, and so forth). (Refer to the AMD’s or Zilog’s
8530 technical manual for specifics on setting up the SCC port.) The data register
transmits and receives data.

Each SCC port has preassigned command and data register VO addresses, which are
listed in Table 26. These addresses are accessible from the controller side only.

Table 26. SCC I/O addresses.

Hostess SCC Command Data
186 Port: port: register: _register:
004h 0006h
000h 0002h
084h 0086h
080h 0082h
104h 0106h
100h 0102h
184h 0186h
180h 0182h

o|~i|o|on
~|o|of sl ol —|of

The examples that follow show how to write to a command register and a data
register for a particular port.

This example writes a value (in this case a 3) to port 1's command register:
outp (0x0004, 4); /* Setup register 4 index on port 1 */

outp (0x0004, 3); /* Write value (3) to register 4 */

This example writes a value (in this case a 31h) to port 1's data register:

outp (0x0006, 0x31); /* Write value (31h) to data register on port 1 */

SCC Port Communication

Reading the Modem Status Register

Thg modem status register is a 16-bit register located at 0200h in the L0 space. This
register reports the state of the Data Set Ready (DSR) and Ring Indicator (RI)
signals of DCE devices connected to the Hostess 186’s ports.

/O Address: 5 6 5 4 3 2 1 0
0200n [DSR8 [DSR7[DSR6| DSRS | DSR4 | DSR3| DSR2 | DSR1 |

15 14 13 12 11 10 9 8
[re 8[r1 7[Rt 6[r1 s[r1][RI 3[RI 2|RI 1]

Figure 16. Modem status register format.

The register values are:

Bit value: Meaning:
0 Signal low (inactive)
1 Signal high (active)

CHAPTER 10 - Downloading and Executing a Control Program

Downloading a Control Program
To download and to execute a control program, follow these steps:

1. Write the control program'’s executable code to dual-ported RAM, starting at
controller memory address 10080h.

2. Compliment the two-byte “interaction flag” at controller memory address
10000h from 55AAh to AA55h.

3. Interrupt the controller by writing to the “VO_base+2” address. This generates
a system-to-controller (SYSTEM) interrupt. The firmware has set up a service
routine for this interrupt that verifies that the “interaction flag” is equal to
AAS55h, and jumps to controller memory address 10080h to execute the control
program.

4. Execute the control program. The control program should immediately: disable
interrupts , allocate a local stack, initialize the interrupt vectors for the
system’s interrupts, timers, and SCCs.

Following this initialization, enable interrupts and continue with normal
operation.

We recommend that the control program sets up all its interrupt vectors and then
compliments the bytes of the “interaction flag” back to 55AAh as a signal to the
system that the control program is functioning properly.

The following paragraph izes the steps needed to download a control
program to the Hostess 186 controller.

Downloading Summary:
1. Wirite the control program code into dual-ported memory starting at controller
memory address 10080h.

2. Compliment the “interaction flag” at controller memory address 10000h from
55AAh to AAS5h.

3. Interrupt the controller.

Downloading and Executing

Using the DPLOADER Program

You can use the DPLOADER program, found on the Sample Programs diskette, to
download a control program to the Hostess 186. DPLOADER is a DOS program. To
use it, follow these steps:

1. Execute DPLOADER.EXE.

=)

2. DPLOADER will prompt you for values it needs to download the control program.

Enter most significant digit of dual port RAM address in hex: d
Enter 1/0 base address in hex: 218
Dual Port Base Address = DO0O:0000
1/0 Base Address = 218
Reset HOSTESS 186 controller {¥/N}? y
Waiting for reset to complete
Enter control program file name to download: cpe.exe
Enter number of bytes to strip off file: 640
Invoke Turbo Debugger Remote Kernel on HOSTESS 186 controller (Y/N}? n
Downloading cpe.exe...
000K bytes downloaded successfully.
COM processor interrupted to start control program
Control program started execution

(This example uses the CPC.EXE control program. The 640 bytes stripped off
the beginning of CPC.EXE include the 512 byte .EXE file header, and the 128 byte
“firmware data area” that should not be overwritten.)

CHAPTER 11 - Using Turbo Debugger®

Borland’s Turbo Debugger is a source-level debugger that provides a windowing

user interface. COMTROL supports the use of this debugger, allowing you to

execute and debug programs that operate on the Hostess 186 eight-port controller.

There are two debugging environments possible:

¢ a PC with both the Hostess 186 and Turbo Debugger installed, and

* two PCs, one with Turbo Debugger installed, and the other with the Hostess 186
installed.

This section explains how to set up the latter system. The examples used in this
section use the C versions of the sample programs found on the Sample Programs
diskette.

Setting Up the Debugging Environment Hardware

The two-PC debugging environment has a development PC that displays Turbo
Debugger, and a remote PC system. The remote system runs Hostess 186 control
programs under the Turbo Debugger envir t. These systems must be
configured as follows:

* The development system must be an IBM PC or compatible, with DOS 2.0 or
higher, and at least 384K of RAM. A hard disk is recommended.

The remote system, for these sample programs, must have the

Hostess 186 controller installed.

Set the Hostess 186 for IO address 218h. The sample program CPC.EXE sets the
Hostess 186 to use 64K of system-side memory, starting at D000:0. Make sure
that no device occupies this memory space.

Connect the development PC to the remote PC with a RS-232 null-modem cable.
Attach one end of this cable to port 8 of the Hostess 186’s interface box. Attach
the other end of this cable to the COM1 port of the development PC.

Development PC Remote PC

COM1 port Port 8

T maml |

Turbo Debugger®

Setting Up the Debugging Environment Software

This section uses examples from the C programs found on the Sample Programs
diskette. Create directories on both the remote and development PCs, and copy the
following programs to the appropriate systems:

Remote Development
system: system:
DPLOADER Executable cec.C Source
CPC.EXE files CPC.H files
HITERM.EXE CPCSTART . ASM

CPC.TDS Symbol table

If you have not done so already, install Turbo Debugger on the development
system.

The following steps show how to invoke Turbo Debugger and these files on both
systems.

1. On the remote system, invoke DPLOADER.

=)

2. Identify these values: the dual-port RAM’s most significant digit, the 110 base
address, the name of the download program, and the strip-off value. Authorize
DPLOADER to reset the Hostess 186 and to invoke the remote Turbo Debugger
kernel. (For this example, use CPC.EXE as the file to download.)

Enter most significant digit of dual port RAM address in hex: d
Enter I/0 base address in hex: 218
Dual Port Base Address = D000:0000
I/0 Base Address = 218H
Reset HOSTESS 186 controller (¥/N)? y
Waiting for reset to complete
Enter control program file name to download: cpe.exe
Enter number of bytes to strip off file: 640
Invoke Turbo Debugger Remote Kernel on HOSTESS 186 controller (Y/N}? y
Turbo Debugger Remote Kernel started.
Downloading cpe.exe. ..
XOXKX bytes downloaded successfully.

Turbo Debugger®

3. On the development system, invoke Turbo Debugger.

(c: td -rpl -zs3)

The -rpl argument specifies the COM1 port. The -rs2 argument sets the
fixed speed of the serial link. For Turbo Debugger versions 2.5 and above, use
the -rs3 argument to specify 38.4Kbaud. For Turbo Debugger versions 2.0
and below, use the -rs2 argument to specify 38.4Kbaud. An opening window
appears first, followed by the CPU window.

/= File View Run Breakpoints Data Options Window Relp READY
1[] Remote CPU
©5:00000000 add [(bx+si],al ax 0000 c=0
002 0000 add (bxtsi],al bx 0000 z=0
004 0000 add [bxtsi],al cx 0000 s=0
006 0000 add ‘bx+si],al dx 0000 o=0
008 0000 add {ox+si],al si 0000 p=0
00A 0000 add [bxtsi),al di 0000 a=0
00C 0000 add [bx+si),al bp 0000 i=0
00E 0000 add ([bxtsi],al sp 0800 d=0
010 0000 add [bxtsi),al ds OOAF
012 0000 add [bxtsi),al es OOAF
:0014 0000 add [bxtsi],al ss OOAF
016 0000 add [bx+si],al cs ‘00AF
©5:0018 0000 add [bx+si),al ip 0000
ds:0000 00 00 00 00 00 00 00 00 0000
ds:0008 00 00 00 00 00 00 00 00 0000
ds:0010 00 00 00 00 00 00 00 00 0000
ds:0018 00 00 00 00 00 00 00 00 55108000000

[F1-Help F2-Bkpt F3-Mod Fd-Here FS-Zoom Fé-Next F7-Trace F8-Step F9-Run F10-Menu
&

The following steps are tedious, so we recommend that you invoke Turbo
Debugger’s Macro recording function — this will save you time and
keystrokes when you start subseq debugging i Note that the
following examples use the CPC.EXE and CPCSTART files. Your macros will
differ, depending on the files to debug. (To invoke the macro function, press
<Alt> O and choose Macros from the menu.)

Turbo Debugger®

4. Press <Alt> O, and choose Macros - Create.

/= File View Run Breakpoints Data Options Window Help TEND
0]
:00000000 add (bx+si],al | Language... Source
002 0000 add (bxtsi),al |Macros
004 0000 add [bx+si],al
006 0000 add [bxtsi),al | [Create... At =
510008 0000 add [bx+sil,al | [Stop recording ALt -
00A 0000 add [bx+si],al | | Remove
00C 0000 add [bx+si],al Delete all
00E 0000 add [bx+si],al
010 0000 add [bxtsil,al ds O0AF
012 0000 add [bx+si],al es O00AF
014 0000 add [bxtsil,al ss OOAF
016 0000 add [bx+sil,al cs OOAF
©s:0018 0000 add [bx+si],al ip 0000

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 $5:08000000

Create a new keystroke macro

J

Select Create from the Macros sub-menu. Turbo Debugger will prompt you
for the keystroke sequence that starts the macro.

5. Press <Alt> F, and choose Symbol Load.

/= File View Run Breakpoints Data Options Window Help W\
0
c| Open... add [bx+si],al ax 0000
c| change dir. add [bxtsi],al bx 0000
| Get info.. add [bxtsi],al cx 0000
| pos she11 add [bx+si],al dx 0000
add [bx+si],al si 0000

c|Resident add [bxtsi],al di 0000
c|Symbol load. |add ([bxtsi],al bp 0000
c[Table relocate.]add [bxtsi],al sp 0800
add [bxtsi),al ds O0AF

| quit Alt-X |add [bx+si],al es O0AF

add [bxtsi],al ss O0AF
©$:0016 0000 add [bx+si],al cs O0AF
©$:0018 0000 add [bx+si],al ip 0000
ds:0000 00 00 00 00 00 00 00 00 $5:0806 0000
ds:0008 00 00 00 00 00 00 00 00 $5:0804 0000

Turbo Debugger”
6. Choose the file to load, and enter the symbol table file's name.

F File View Run Breakpoints Data Options Window Help PROMPT \
1) [~ Enter symbol table name

s

cs{ File name

cs{ cpe.tds

cs

csq Files Directories

cs{ cpa.tds .

csy cpe.tds

s

s

s

cs

cs

cs

ds

ds.

ds

ds

: \W\HISAMPLE*.TDS
ICPC.TDS MMM DD, 199X HH:MMpm XXXX bytes

\Eater 3 File name J

(This example uses the cpc. tds symbol table file.)

7. Press <Alt> F, and choose Table relocate....
(= File View Run Breakpoints Data Options Window Help
10

of open... add [bx+si],al ax 0000 c=0
| change dir.. add [bx+si],al bx 0000 z=0
¢fGet info.. add [bx+si],al cx 0000 s=0
c|Dos shell add [bxtsi],al dx 0000 o=0

add [bx+si],al si 0000 p=0
c|Resident. add (bx+si],al di 0000 a=0
c|symbol load.. [add (bx+si],al bp 0000 i=0
c|Table relocate.fadd (bx+si],al sp 0800 d=0
of add [bx+si],al ds OOAF
| Quit Alt-X [add [bx+si],al es OOAF

add [bxtsi],al ss O0AF
©5:0016 0000 add [bx+si],al cs OOAF
©5:0018 0000 add [bx+si),al ip 0000
ds:0000 00 00 00 00 00 00 00 00 55:0806 0000
ds:0008 00 00 00 00 00 00 00 00 $5:0804 0000
ds:0010 00 00 00 00 00 00 00 00 55:0802 0000

ds:0018 00 00 00 00 00 00 00 00 $5:08000000

Turbo Debugger®

8. Enter 1000 to identify the segment to execute on the local processor.

File View Run Breakpoints Data Options Window Help PROMPT
10

5300000000 add [bxtsi],al ax 0000 c=0

©5:0002 0000 add [bxtsi],al bx 0000 z=0

©5:0004 0000 add [bxtsi],al cx 0000 s=0

©5:0006 0000 add ([bxtsi],al dx 0000 o=0

©5:0008 0000 add [bxtsi],al si 0000 p=0

s:000A 0000 add [bxtsi],al di 0000 a=0

©5:000C 0000 add [bxtsi),al bp 0000 i=0

©5:000E 0000 add [bxtsi],al sp 0800 d=0

cs:-Enter new relocation segment value- 00AF

cs: 00AF

cs:f 1000 00AF

st 00AF

es;| 0000

ds: l:0806 0000

ds:0008 00 00 00 00 00 00 00 00 5510804 0000

ds:0010 00 00 00 00 00 00 00 00 55:0802 0000

ds:0018 00 00 00 00 00 00 00 00 55108000000

\E.ncex item prompted for in dialog title)

This specifies the segment to execute on the Hostess 186 controller’s
processor. You should always specify 1000 for this value.

9. Press <Ctrl> G, and enter the address of the entry point. (This example uses the
symbolic name start.)

< File View Run Breakpoints Data Options Window Help BROMPT

8!

interact_flag ax 0000 cm=0
1000:0000 55 push bp bx 0000 z=0
1000:0001 ArEnter address to position toy0000 s=0

#cpeboot_ 0000 =0
1000:0002 q start 0000 p=0
#epeke s 0000 a=0
1000:0004 0000 i=0
#epek£u_re: 0800 d=0
1000:0006 O00AF
1000:000A 202E2E2E and [2E2E],ch es O0AF
#cpetsw_release ss 00AF
1000:000E 2E2E2E2E2+add cs: [bx+si],al cs O0AF
1000:0018 0000 add [bx+si),al ip 0000
4=-A00A A0 AN AN 0 AN AR a0 an e-nan& namn

Turbo Debugger®

10. Press <Ctri> N.

‘When you press <Ctrl> N, this updates the registers for the CS:IP (current
segment:instruction pointer).

Enter the first instruction displayed to assemble (for example, type c1i).
- File View Run Breakpoints Data Options Window Help READY

101
start: start: cli ;disable interrupts ax 0000

1000:0080FA cli bx 0000
#cpc#d6: Enter instruction to assemble;0000
1000:0081 0000
#opc#d?: | cli 0000
1000:0083 0000
Yepetas:
1000:0085 0800
#cpc#S0: 00AF
1000:0087 BCIEOS mov sp, OB1E es 00AF
H#ope#S2: xor ax,ax ss O0AF
1000:008A 33C0 xor ax,ax cs 00AF
#cpe#S3: mov ex,ax ip 0000

10806 0000
008 00 00 00 00 00 00 00 00 :0804 0000
010 00 00 00 00 00 00 00 00 0802 0000
018 00 00 00 00 00 00 00 00 $5:08000000

ds:0000 00 00 00 00 00 00 00 00
ds

tﬂelp F2-Bkpt F3-Mod F4-Here FS-Zoom Fé-Next F7-Trace F8-Step F9-Run FlO»Henu)

From this point forward, you may customize your environment to you liking —
remember that the macro facility records all of your actions. To stop recording,
choose Options - Macros — Stop Recording. To save the macro, choose
Options — Save Options. For future debugging sessions, use this macro to
automatically replay steps 6 through 11. Finally, to invoke this macro, type the
specified macro keystrokes when Turbo Debugger starts.

Turbo Debugger®

Configuring Symbol Tables

To use Turbo Debugger, you must generate a symbol table to accompany your
program. To create a symbol table:

1. Use the compiler’s command options to compile and link your program
(Refer to your vendor’s documentation for specifics.)

Run the resulting .EXE file through Turbo Debugger’s symbol table
separating utility called TDSTRIP.EXE. This utility removes the symbol table
from the executable file and places it in a separate file. The symbol table file
has the extension .TDS.

The following examples, from the sample make file TSAMPLE.MK, explain the
options used to make a symbol table.

2.

For the assembly language example, the “make” is:
tasm /1 /s /zi cpa.asm, cpa.obj
#/1: Create a listing file
#/s: Use source code segment orderin
#/zi: Include full symbolic debug information in object file
tlink /m /s /v cpa.ob3, cpa.exe, cpa.map
#/m: Create a mep file
#/s: Put detailed map of segments in map file
#/v: Include full full symbolic debug information in executable file
tdstrip -c cpa.exe cpa.tds
#/s: Put symbol table in file cpa.tds
#/c: Create .COM file (this is optional,

.EXE file can also be used)
For the C example, the “make” is:

#CC = tee # for Turbo C++
CC = bece # for Borland C++
#CPCLIB = \tc\lib\cs.lib # for Turbo C++

CPCLIB = \borlandc\lib\cs.lib # for Borland C++
#CPC (built with symbol table for debugging with Turbo Debug)
cpc.exe: cpc.obj cpcstart.obj tsample.mk
tlink /m /s /v cpcstart.obj cpc.obj, cpc.exe,
#/m: Create a map file
#/s: Put detailed map of segments in map file
#/v: Include full full symbolic debug information in executable file
#Note: The start up module CPCSTART.OBJ must be placed first in the
list of object files!
tdstrip -s cpc.exe
#/ Put symbol table in file cpa.tds
cpc.obj: cpc.c tsample.mk
$(CC) -c -mt -G -v -ocpc.obj cpc.c
Compile to object file but do not link
#-mt: Compile using tiny model

cpc.map, $(CPCLIB)

Turbo Debugger®

Invoking the Remote Turbo Debugger Kernel

The firmware on the Hostess 186 contains a Turbo Debugger remote “kernel” that
must be invoked before Turbo Debugger on the remote computer can establish
communication with the Hostess 186. Invoke the kernel by executing an int 27h
interrupt to the Hostess 186’s processor.

There are two methods to invoke the kernel. The first is demonstrated in the
sample DPLOADER.C program, function invoke_tdrem (). Here the system
processor writes the int 27h opcode value of 27cdh into dual-port RAM at local
processor address 1000:80. Next, the system processor interrupts the local
processor, which executes the int 21h interrupt service routine to start the

kernel. After this, you can download a control program and start the debugging
session.

function invoke_tdrem():

/* Entry: flag_p - Pointer to interaction flag */
’* io - Board I/0 base address */
/* Retumns: 1 if tdrem is invoked, else O */

int invoke_tdrem(int io,unsigned far *flag_p)
{
char strbuff(0x81];

int do_tdrem,valid_answer,wait;
unsigned rec_flag;

/* Stores string entered by user */

/* Received copy of interact flag*/

valid_answer = 0;
while(tvalid answer)
{
printf ("Invoke Turbo Debugger Remote Kernel on Hostess 186 controller (Y/N)? ");
scanf ("§s", strbuff) ;
switch (*strbuff)
{

case 'Y':
valid answer = 1;
do_tdrem = 1;

Turbo Debugger®

if (do_tdrem)
{
(flag_p + 0x40) = Ox27cd; / Write int 27H instruction used to
invoke TDREM kernel */
flag_p = 0xaaSs; / Set up interaction flag */
outp (io + 2,0): /* Interrupt COM Processor */
for (wait = O;wait < 10;wait++) /* wait for execution to finish*/
delay (200) ;
if (*flag p == OxS5Saa)
break;
}
if((wait >= 10) && ((rec_flag = *flag p) != OxSS5aa))
{
Printf(" Turbo Debugger Remote Kernel failed to start, interact flag = %XH\n",rec_flag);
exit(1);
}
printf (" ‘Turbo Debugger Remote Kernel Started\n");

return (do_tdrem) ;

The second method that invokes the Turbo Debugger remote kernel is to embed the
int 27h interrupt within the downloaded control program. If you do this, in the
<Ctrl> G step of the Turbo Debugger startup sequence, enter the starting address
of the instruction immediately following the int 27h. Also, change the interaction
flag at local address 1000:0 to AA55h before executing the int 27h interrupt. The
interrupt service routine will restore this flag back to 55AAh; this will serve as an
indicator that the interrupt was handled correctly. In assembly language this
could be written as:

mov ax,1000h JES -> interaction flag

mov es,ax

mov es:0,0aasSh jwrite interaction flag

int 27h ;invoke Turbo Debugger remote kernel
start_debug: ;symbolic address for

; Turbo Debugger <CTRL G>

Turbo Debugger®

Notes on Using Turbo Debugger

‘When debugging code with Turbo Debugger remotely, remember that line 7 (port
8) of the Hostess 186 is used by Turbo Debugger. Therefore, your program must not
use nor initialize line 7 of the SCC channel while debugging remotely.

The <CTRL BREAK> feature of Turbo Debugger is not operational with this

impl ion of Turbo Debugger remote. If Turbo Debugger is “running” and a
breakpoint is never reached, there is no method of breaking execution without
rebooting DOS on the remote system and restarting the entire debugging session.
However, you can use the debug switch to issue an NMI (non-maskable interrupt)
to the 80186. This will halt the executing program and return control to Turbo
Debugger. Turbo Debugger replaces the non-maskable interrupt vector (type 2)
with its own interrupt vector when Turbo Debugger starts up. Turbo Debugger
also replaces the TRACE and Breakpoint interrupt vectors (types 1 and 3) with its
own interrupt vectors. The remaining interrupt vectors are unaffected.

Single-stepping with the <F7> and <F8> function keys through instructions which
result in hardware interrupts may not generate the interrupt reliably. For
example, the instruction outp (0xel£6,0x31) writes a character out to line 0.
This will normally result in a Transmit Buffer Empty (TBE) interrupt. However, if
this instruction is single-stepped, the interrupt may not occur. To avoid this, set a
breakpoint after the outp () and run to it, rather than single stepping over the
outp () instruction.

Do not single-step instructions that follow the end-of-interrupt (EOI) to the
programmable interrupt controller (PIC). The trace instruction uses a software
interrupt (INT 3) to stop the next instruction from executing. If you single-step
after an EOI is issued, the interrupt service routine (ISR) for the INT 3 software
interrupt issues an IRET. This enables other interrupts to occur before the current
interrupt is serviced.

Place a NOP instruction after the last instruction in the main procedure if an
interrupt service routine follow the main procedure, and this interrupt could
occur during a trace (F7/F8) of the last instruction in the main procedure.

You can debug only code that resides in RAM. Turbo Debugger cannot make
firmware debugging calls (for example int 21h, the firmware RAM query) to the
Hostess 186.

Turbo Debugger®

How to Connect the Debug/Reset Switch to the Controller

This is an option that must be ordered for the Hostess 186. (Order part number
HO86DCO0A, the development kit for the Hostess 186. There is no extra charge for
this option.)

The Debug/Reset switch requires a three-prong header at the top center of the
controller. If you want to use the firmware debugger, check that the controller you
are using has this header. Please call COMTROL Technical Support if this header
is missing from your controller.

Controller Development DIP
Processor header/Si(ch
8530 8530
1 8018
I:] 8530 8530
5
H
:
E
o

=

Reset/Debug,/
plug and cable

Figure 18. Location of the development header.

CHAPTER 12 - Using the Hostess 186’s Firmware Debugger

Debugger Setup

The debugger is provided as part of the firmware installed in the Hostess 186
controller. This debugger can set a breakpoint, display memory, display registers,
disassemble instructions, perform input and output to VO ports, and single step
through instructions.

The debugger console is initially assigned to the first serial port on the Hostess 186
controller. The serial communications parameters are defined as follows:

* 9600 bits/second

* no parity

* eight (8) bits per character

* one (1) stop bit

These parameters are fixed; a program cannot alter them. This picture shows how
to setup a terminal to port one on a development PC:

Terminal Development PC

Port 1

Terminal Interface Hostess 186
cable box 100-pin connector

Figure 19. Cabling setup between a terminal and a development PC.

Firmware Debugger

Invoking the Firmware Debugger

The firmware debugger essentially operates as an interrupt service routine. The
Hostess 186 firmware provides access to the debugger and its functions through two
software interrupts:

INT 20h
A program may invoke the debugger through this interrupt. The firmware
configures serial port 1 as the debug console during system initialization.
INT 22h
After the system initializes, a program may change the debug console by
executing an interrupt 22h. Load a valid device number from 0 to 7
(ports 1 through 8) into register AL before executing the software interrupt.

If you have an interface box with a debug switch, pressing that switch generates a
NMI hardware interrupt that invokes the firmware debugger.

Firmware Debugger
A Summary of Debugger Commands
The Hostess 186 deb supports the following d
Command _Name Function
B Byte All succeeding Input or Output commands read or
write 8 bit values.
D Dump Displays the contents of a specified memory region.
G Go Continues execution from the current location with or
without a breakpoint.
| Input Inputs and displays a byte or word from the specified
110 port.
[0} Output Outputs a byte or word to the specified /0 port.
R Register Displays the contents of all registers.
T Trace Executes the next instruction (single step).
§] Unassemble Disassembles a specified memory region.
w Word Formats all succeeding Input or Output commands
to read or write 16-bit vaiues.

Firmware Debugger

Debugger Command Definitions

This section describes how to use each of the debugg d e d
appear in alphabetical order. The function and format of each command appears as
well as remarks and examples where appropriate.

For all the debugger commands:

* Each command is a single letter, which may be followed by one or more
parameters.

* Parameters shown in CAPITAL LETTERS mean that you should substitute your
value for that item.

Optional parameters appear inside square brackets [].

* Commands and parameters may be entered using uppercase, lower-case, or a
combination of both.

¢ Commands execute only after you press the <Enter> key.

The debugger prompt is a hyphen (-).

If the debugger encounters a syntax error, the pointer error shows the location of
the error.

Debugger Commands

B (Byte Mode)

Causes all succeeding Input or Output commands to read or write eight-bit (byte)
values.

Format: B

No arguments are required.

Firmware Debugger

D (Dump)
Displays the contents of a specified memory region.

Format: D [STARTING ADDRESS] [ENDING ADDRESS]

or
D [STARTING ADDRESS] [L LENGTH]

STARTING ADDRESS specifies the first address of a range of addresses to be
displayed. It may take any of the following forms:

1. A segment value, offset value pair separated by a colon (:).
2. A segment register mnemonic and an offset value separated by a colon ().
3. An offset value only. A default segment will be used.

ENDING ADDRESS is an offset value, within the segment specified by the STARTING
ADDRESS, which specifies the last address of a range of addresses to be displayed.

Alternatively, L LENGTH specifies the number of bytes to be displayed. If no ENDING
ADDRESS or L LENGTH is specified, the default display length is 128 bytes.

If no arguments are specified and no previous D command has been entered, display
will start at the current CS:IP location. If a D command has previously been entered,
display will start with the byte following the last byte previously displayed. Again,
the default length is 128 bytes.

For example, both of these ds display the of memory from
0040h:000h through 0040h:00FFh:

D 40:0 FF
or
D 40:0 L 100

This command displays the contents of memory from offset 1000h, within the
segment currently pointed to by the ES register, through offset 107Fh, the default
length:

D ES:1000

Firmware Debugger

G (Go)
Executes from the current location with or without breakpoints.

Format: G [BREAKPOINT ADDRESS]

BREAKPOINT ADDRESS specifies an address where program execution will be
interrupted and control returned to the debugger.

If no breakpoint is specified, the program continues to execute normally.

For example, this command allows program execution to continue from the current
location (CS:IP) and sets a breakpoint at address 4000h:0007h. Program execution
will be interrupted and control returned to the debugger if the program attempts to
execute the instruction at this address:

G 4000:7

I (Input)
Inputs and displays a byte or word from the specified 1O port.

Format: I PORTADDRESS

PORTADDRESS specifies a 16 bit VO address from which data will be input. The size
of the input data (byte or word) will depend on the current /O mode (see the Byte
and Word commands).

For example, this command inputs data from the VO port at address 202h:

I 202

O (Output)
Outputs a byte or word to the specified V0 port.

Format: 0 PORTADDRESS VALUE
PORTADDRESS specifies a 16-bit /O address to which data will be output.

VALUE is the data to be output. The size of the output data (byte or word) will
denend on the enrrent. 110 mode (see the Rute and Ward sammande)

Firmware Debugger
R (Register)
Displays the contents of all registers.

Format: R .
No arguments are required.

T (Trace)
Executes the next instruction (single step).

Format: T

No arguments are required.

U (Unassemble)
Disassembles a specified memory region.

Format: U [STARTING ADDRESS] [COUNT]

STARTING ADDRESS specifies the first address of a range of addresses to be
disassembled. It may take any of the following forms:

1. A segment value, offset value pair separated by a colon ().
2. A segment register mnemonic and an offset value separated by a colon ().
3. An offset value only. A default segment will be used.

COUNT is the number of instructions to disassemble. If no COUNT is specified, a
default of 16 instructions will be disassembled.

If no arguments are specified and no previous U command has been entered,
disassembly will start at the current CS:IP location. If a U command has previously
been entered, disassembly will start with the instruction following the last
instruction previously displayed.

For le, t d will di: ble eight instructions starting at address
4000h:0003h:

U 4000:3 8

Firmware Debugger

W (Word Mode)
Causes all succeeding Input or Output commands to read or write 16-bit (word)
values.

Format: w

No arguments are required

Notes on Using the Firmware Debugger

Here are a few “features” that you should be aware of when using the firmware
debugger:

1. Jump instructions display the next instruction’s address as a relative address
and not as an absolute address.

2. Non-8086 instructions do not disassemble correctly. These instructions appear
as:

* data *
These instructions will execute correctly, however.

3. Timer, systems, and SCC interrupts may continue to occur when you use the
firmware debugger. These system interrupt routines (ISRs) cannot make any
assumptions about the state of any registers, including the segment registers,
because the firmware debugger has modified these registers for its own use.

Therefore, when you start debugging, for all the registers used by ISRs, the ISR
must save and initialize these registers, and then restore them before you exit
the ISR.

Firmware Debugger

How to Connect the Debug/Reset Switch to the Controller

This is an option that must be ordered for the Hostess 186. (Order part number
HO86DCO0A, the development kit for the Hostess 186. There is no extra charge for
this option.)

The Debug/Reset switch requires a three-prong header at the top center of the
controller. If you want to use the firmware debugger, check that the controller you
are using has this header. Please call COMTROL Technical Support if this header is
missing from your controller.

Controller Development DIP
Processor header Switch

8530 8530
] 8018
:} 8530 8530

Reset/Debu
plug and cable

Figure 20. Location of the development header.

Firmware Debugger

APPENDIX A — Assembly Language Listings

The following files are in the 80186 assembly language:

¢ CPA.ASM — the assembly language source code for CPA.COM.
* CP.EQU - the include file for CPA.ASM

Invoking HITERM

Here are a few guideline for executing the HITERM.EXE program with the CPA.COM
assembly language control program:

1.
2.

Set the Hostess 186 for 10 address 218h.

Check that no other device occupies the D000 base memory address.
The program uses 64K starting at D000:0.

Install the controller in the system.

Connect a non-intelligent ASCII terminal to the port on the Hostess 186 that you
want to use.

Set the terminal to:

* 9600 baud

* 8 data bits

* 1 stop bit

* no parity

* no flow control.

Start-up DOS.

Execute DPLOADER.EXE.

[c: dploader)

DPLOADER will prompt you for values it needs to download the control program.

Assembly Language Listings

Enter most significant digit of dual port RAM address im hex: d
Enter 1/0 base address in hex: 218

Dual Port Base Address = D000:0000

1/0 Base Address = 218H
Reset HOSTESS 186 controller {Y/N}? Y

Waiting for reset to complete

Enter control program file name to download: cpa.com
Enter number of bytes to strip off file: 0
Invoke Turbo Debugger Remote Kernel on HOSTESS 186 controller (Y/N}? a

Downloading cpe.exe.
X0OXX bytes downloaded successfully.

CoM processor interrupted to start control program
Control program started execution

(To run the Turbo Debugger verison; answer <y> to the last question.)

Execute HITERM.EXE.
The HITERM application sends and receives any characters you type on either
keyboard. Pressing the <F10> key terminates the transmittal.

CPA.ASM

page 60,80
.186
iFile: cpa.asm

;Purpose: Sample assembly language control program for HOSTESS 186.
; Supports open, close, read, and write to any asynchronous line.
;Company: Comtrol Corporation

jAuthor: Craig Harrison

;Release: 1.00, 2-18-92 - Original release
St SRR et

;Copyright 1992 Comtrol Corporation. All rights reserved. Subject to developers
license agreement.

jreeen P—

.xlist
.list
include cp.equ

_TEXT segment para public 'CODE'
assume cs:_TEXT, ds:_TEXT
org Oh
;The first 80h bytes are the "firmware user area" defined by the HOSTESS 186
;firmware

public interact_flag

interact_flag dw ? ;processor interaction flag
boot_flag dw 2 oot /activity flag
cfg_map dw 2 onfiguration map
fu_release db 8 dup (2) irmware release number
sw_release db 8 dup (2) ontrol program release number
dd 2 ; reserve
dram_map ad 2 RAM map
scc_map dad 2 cC map
board_id dd ? oard ID
ii_flag db 2 nvalid interrupt flag
1i_type ab 2 nvalid interrupt type
iiZent dw 2 ;invalid interrupt count
ab 128-42 dup (?) ;balance Cf firmware area

org 80n ;firmware jumps here when interrupted
public cpmain, start
cpmain proc

CPA.ASM

xor ax, ax
mov es, ax

mov bx, INT1_type*d ;setup system interrupt vector
mov ax,offset system isr

mov es: [bx], ax

mov ax,cs

mov es: [bx+2),ax

mov bx, TIM1_type*4 ;setup timer 1 intr vector
mov ax,offset timerl_isr

mov es: [bx],ax

mov ax, cs

mov es: [bx+2],ax

mov ax, TIMER_INT_CTRL ;write to interrupt timer cotrol reg.
mov dx, ax

mov ax,0000h ;allow interrupts for timer 1.
out dx, ax

mov dx, TMR1_MAX_CNTA

mov ax, TIMER1_CNT 130/sec

out dx, ax

mov dx, TMR1_CTRL_reg

mov ax,0e001h ;enable timer 1, max count A
out ax, ax

mov ax, base_vector ;AX = base vector type

call vector_init ;initialize vector table

mov. ax,cs

mov es,ax

mov di,offset interact_flag ;DI=> interaction flag

mov [di], 55aah ;restore interaction flag

mov di,offset boot_flag ;indicate control program active
mov [di), 0££££h

mov di,offset sw_release ;move software release number
mov si,offset release ; to shared memory

mov cx, release_len

rep movsb -

sti ;enable interrupts

CPA.ASM

;Main processing, is an infinite loop
main_10:

si,offset 1ine00 ;SI=> 1st line table

ax, [si).line_status ;get line status

ax,line_active ;is line active ?

short main_40

mp main_70 ; no ... move on to next line

test ax,Tx_active ;is transmit active ?
jnz main_70 ; yes ... move on to next line
call deq Tx_data jcharacter from xmit queue to send?
je main_70 ; no ... continue

main_60:
cli ;protect SCC out from interrupts
or [si].line_status,Tx_active ; indicate transmit active
mov ax, [si].ic_base ;get base I/0 address
add dx, 2 joffset to data register
out ax, al ;jmove character to SCC
sti

main_70:
cmp si,offset 1ine07 ;last table?
31 short main_75 ; no ... continue
3mp main_10 jotherwise start over ...
add si,line_entry_len ;bump to next line table
mp main_30

nop
cpmain endp

Name: timerl_isr

Purpose: Process interrupt from timer 1. Doesn't do anything useful, just
increments a word in dual port RAM to demonstrate that its working.

Entry: Nothing

; Exit: Nothing

timerl_isr proc

push ax ;save registers

push dx

inc word ptr ds:7ch ;increment word

mov dx, INTCTL ;end of interrupt to PIC
mov ax,EOI_VAL

out dx, ax

pop ax ;recover registers

pop ax

iret

timerl_isr endp

CPAASM

;Name: system_isr

;Purpose: Process interrupt from sytem processor
Nothing
Nothing

system_isr proc
pusha ;save registers

system isr_02:

call deg_Com_msg ;Comm Processor message waiting ?

je system_isr_20 i no ... exit

mov al,msg_area iget command

xor ah,ah ;clear upper byte

shl ax,1 ;double the command value

mov bx,offset command_tbl ;BX=> command table

add bx, ax joffset into table

cmp bx,offset command_tble ;valid command ?

3nc system_isr_10 ; no ... continue

call word ptr [bx] ;invoke command processor
system_isr_10:

3mp system_isr_02 ;check for another message
system_isr_20:

mov dx, INTCTL ;end of interrupt to PIC

mov ax,EOI_VAL

out dx, ax

popa

iret
system_isr endp
command_tbl equ s

aw null_cmd ;0 - null command

aw open ;1 - open a line

aw close ;2 - close a line

dw int_sys ;3 - generate interrupt to system
command_tble equ B

null_cmd (0)

Handle unimplemented command
Nothing

Nothing

null_cmd proc
ret
null_cmd endp

CPAASM
iName: open (1)
jPurpose: Open a line for asynchronous communications
jEntry: msg_area+tl = line number
H msg_area+2 = WR3 parameters (Rx character size)
H msg_area+3 = WR4 parameters (stop bits, parity)
; msg_area+4 = WRS parameters (Tx character size)
; msg_area+5 = WR12 parameter (lower byte of BRGIC)
: msg_area+6 = WR13 parameter (upper byte of BRGTC)
JExit: Nothing
open proc
call get_line ;return SI=> line table entry
call configure_line ;configure line for async communications
call enable_line ;enable line
ret
open endp
iName: close (2)
;Purpose: Close a serial line
JEntry: msg_area+l = line number
JExit: Nothing
close proc
call get_line ;SI=> line table entry
mov dx, [si).io_base get base I/0 address
mov al, WR1 ipoint to WR1
out dx,al
xor al,al ;disable all interrupts
out dx,al
mov [si).line_status,0 ;disable all in line_status
ret
close endp
iName: int_sys (3)

;Purpose: Generate an interrupt to the system. This would probably never be
: executed as a command from the system by is included here to show how
i to interrupt the system.

jEntry: Nothing

JExit: Nothing

int_sys proc

mov dx,C2Sint_reg ;address of interrupt reg
et interrupt line low
o it

mov ax,C2Sint_low
out dx, ax

CPA.ASM

configure_line
Configure the communications parameters in the line table

SI=> line table entry

msg_area+l = line number

msg_area+2 = WR3 parameters (Rx character size)
msg_area+3 = WR4 parameters (stop bits, parity)
msg_area+4 = WR5 parameters (Tx character size)

; msg_area+5 = WR12 parameter (lower byte of BRGIC)
H msg_area+6 = WR13 parameter (upper byte of BRGTC)
JExit: Nothing

configure_line proc
h

si ;save line table start
add si,offset WR3_
mov di,si ;DI line table
mov si,offset msg_area+2 ;SI=> message area
lodsb ;WR3 value
and al, 0cOh ;isolate Rx character size
stosb ; and move to line tal
lodsb JWR4 value
and al, 0fh ;isolate stop bits/parity
stosb ; and move to line table
lodsb WRS value
and al, 60h ;isolate Tx character size
mov ah, [di] ;get current value
and ah, 0££h-60h ; and clear Tx character size
or al,ah ;combine the two
stosb ; and move to line table
mov cx,2 ;setup remaining length
rep movsb ;move BRGIC to line table
pop si jrecover line table start
call scc_init jupdate params to SCC
ret .
configure_line endp
enable_line
Enable 2 serial line
SI=> line table entry
Nothing
to enable interrupts: .
WR1 specify external/status interrupts
WR0: reset external status
WRO: reset external status twice
WR! enable receive, transmit and external status' interrupts

WR9: enable master interrupt enable

anshla 1ina mras

CPA.ASM
mov al, [si]) .WRS_ ;make sure RTS is high
or al,RTS
mov [si] .WR5_,al
mov dx, [si).Io_base ;get base i/o address
mov al,WRS
out ax,al
mov al, [si] .WR5_ jtransmit parameters
out
;Enable interrupts
mov al,WR15
out. dx,al
mov al, (si) .WR15_ jexternal/status interrupt control
out
mov al,WRO
out. dx,al ;for insurance
mov al,reset_ext ;reset external status interrupts
out ax, al
mov al,WRl ;interrupt enables
out ax,al
mov al,ext_int_enable+Tx_int_enable+parity_special+Rx_int_enable
out dx,al
mov al,WR9
out dx,al
mov al,MIE+status_lo+VIS ;master interrupt enable
out dx,al
ret

enable_line endp

;Name: get_line
;Purpose: Return line table pointer
jEntry: msg_area+l = line number
JExit: SI=> line table entry

get_line proc

mov al,msg_area+l ;get line number

xor ah,ah ;clear upper byte

mov cx,line_entry_len ;jcalculate line table offset
mul c

add ax,offset 1ine00

mov si, ax

ret

At 1ina andn

CPAASM

;Name:
;Purpose:
JEntry:
JExit:

;Sequence:

scc_init

Initialize SCC for asynchronous operation
SI=> line table entry

Nothing

reset channel

specify clock mode, number of stop bits and parity
specify base interrupt vector type

specify number of bits/character for receive
specify number of bits/character for transmit
specify interrupt control

specify receive and transmit clock source
specify lower byte of Baud Rate Time Constant
specify upper byte of Baud Rate Time Constant
specify Baud Rate Generator source and enable it
enable receive operation

enable transmit operation

mov dx, [si].io_base iget base I/0 address
mov al,WR4
out dx,al
mov al, [si) .WR4_ jstop bits and parity
or al,x16_clock ;jadd clock mode
out dx, al
mov al,WR2
out dx,al
mov al, [si] .WR2_ ;base interrupt vector type
out dx,al
mov al,WR3
out dx, al
mov al, [si] .WR3_ iRx character size
out dx,al
mov al,WRS
out dx,al
mov al, [si) .WRS_ ;Tx character size, modem/break
out dx, al
mov al,WR9
out dx, al
mov al,status_lo+VIS interrupt control
out dx, al
mov al,WR1l
CPA.ASM
mov al,WR13
out dx,al
mov al, [si) .WR13_ ;jupper byte of BRGIC
out ax,al
mov al,WR14
out dx, al
mov al,BRG_eq_sys_clk+BRG_enable /BRG source
out dx, al
mov al,WR3
out dx, al
mov al, [si] .WR3_ jRx character size
or al,Rx_enable ;enable receive
mov [si).WR3_,al
out dx, al
mov al, WRS
out dx, al
mov al, [si] .WRS_ ;Tx character size
or al, Tx_enable jenable transmit
mov [si).WRS_,al
out dx, al
ret

scc_init e

;Name:

jPurpose:

JEntry:
Exi

deq_Tx_data

Remove character from transmit queue
SI=> line table entry

carry set if queue is empty, else
carry clear and AL = character

deq_Tx_data proc
Pu bx
mov bx, (si].Txq tail ;get queue tail
cmp bx, [si) . Txq_head ;is queue empty ?
ste i (assume it is)
jz deq_Tx_data_10 i yes ... exit
push di isave register
mov di, [si).Txq_offset iget queue offset
mov al, [di+bx) ;remove character
pop di ;recover register
inc bx ;bump pointer
and bx, Txq_mask ; and mask it
mov (si).Txq_tail,bx ;update pointer

cle ;return carry clear

carry

enq_Sys_msg
Add message to System Processor queue
Nothing
carry set if queue is full, else

clear

enq_Sys_msg proc

push ax isave registers
push bx
mov bx, offset Sysq ;BX=> system queue data
mov ax, [bx] .msgq_head jget queue head
inc ax ;bump pointer
and ax, msgq_mask ; and mask it
cmp ax, [bx] .msgq_tail jis queue full ?
ste ; (assume it is)
jz enq_Sys_msg_10 i yes ... exit
push cx ;save additional registers
push si
push di
mov ax, [bx] .msgq_head ;get queue head again
mov cx,msg_len jcalculate message offset
mul cl
lea di, [bx] .msgq_area
add di, ax ;got DI
mov si,offset msg_area jgot SI
rep movsb ;move message queue area
mov ax, [bx] .msgq_head ;get queue head again
inc ax sbump pointer
and ax,msgq_mask ; and mask it
mov {bx) .msgq_head, ax ;update queue head
cle sreturn carry clear
pop di
pop si
Ppop cx
enq_Sys_msg_10:
pop bx
pop ax
ret
enq_Sys_msg endp
CPA.ASM
;Name: deq_Com_msg

iPurpose: Remove message from Communications Processor queue
jEntry: Nothing
JExit: carry set if queue is empty, else
; carry clear

deq_Com_msg proc
pus:
push

add

pop
deq_Com_msg_10:

pop

Pop

ret
deq_Com_msg endp

bx

bx, offset Comq
ax, [bx] .msgq_tail
ax, [bx] .msgq_head

deq_Com_msg_10
cx

si

ai

cx,msg_len

si, [bx] .msgq_area
si,ax
di,offset msg_area

movsb

ax, [bx] .msgq_tail
ax

ax,msgq_mask

[bx] .msgq_tail,ax
ai

si

ox

bx
ax

;save registers

;BX=> comm queue data

;get queue tail

;is queue empty ?

; (assume it is)

; yes ... exit

;save additional registers

;calculate message offset

sgot SI
;got DI

;move message local area

; and mask it
;update queue tail

CPAASM

TBE_isr

Common Transmit Buffer Empty Interrupt Service Routine.

This clears the Tx_active flag in the line table to indicate that

a character is no longer in the process of being transmitted.

To keep the time in the ISR short data writes to the SCC are handled
in the main loop.

AX = line table entry

Nothing
TBE_isr proc
push ax ; save registers etc.
push bx
push cx
push si
push di
mov si,ax ;si = line table entry
mov dx, [si].io_base ;get base I/0 address
push dx ;save I/O address for isr_ret
and [si].line_status, 0f££fh-Tx_active ;inactive
TBE_isr_10:
mov al,WRO
out dx,al
mov al,reset_Tx_int ;reset pending Tx interrupt
out dx,al

TBE_isr_99:
Smp isr_ret ; common exit
TBE_isr endp

ESC_isr
Common External Status Change Interrupt Service Routine. This
doesn't do any real work, just demonstrates how to reset and return.

AX = line table entry

Nothing

proc

push dx ;save registers etc.

push bx

push cx

push si

push di

mov si,ax isi = line table entry

mov dx, [si).io_base ;get base I/O address

push ax isave I/0 address for isr_ret

CPA.ASM

;Name: RCA_isr

;Purpose: Common Receive Character Available Interrupt Service Routine
jEntry: AX = line table entry
JExit: Nothing

RCA_isr proc

push dx ;save registers etc.
push bx
push cx
push si
push di
mov si,ax ;si = line table entry
mov ax, [si].io_base jget base I/0 address
push dx ;save I/0 address for isr_ret
add ax, 2 ;set up to read data register
in al,dx ;input character from SCC
mov bx, (si] .Rxq_tail
sub bx, [si] .Rxq_head
dec bx
cmp bx, 0
jge RCA_isr_30
ad bx, Rxb_
RCA_isr_30:
cmp bx,1 ;bx = number of empty Spots
51 RCA_isr_99 ;if Rx buffer full exit
mov bx, (si] .Rxq_head ;get queue head again
mov di, [si] .Rxq_offset ;get queue offset
mov [di+bx],al ;add character to queue
inc bx ;bump head pointer
and bx, Rxq_mask ; and mask it
mov (si] .Rxq_head, bx ; and update it

RCA_isr_99:
3mp isr_ret ;common exit
RCA_isr endp

CPA.ASM

Name: SRC_isr

;Purpose: Common Special Receive Condition Interrupt Service Routine. This shows
; how to get the special receive condition status, but doesn't do any

; processing on it.

;Entry: AX = line table entry

iBExit: Nothing

SRC_isr proc

push isave registers etc.

push

push

push

push

mov si,ax ;si = line table entry

mov dx, [si].io_base ;get base I/O address

push dx ;save I/0 address for isr_ret
mov al,RR1 ;allow access to Read Register 1
out dx, al

in al,dx ;get special receive condition status

;Do Special Receive Condition processing here

mov al, WRO ;for insurance

out dx,al

mov al,error_reset ;issue error reset command
out. ax,al

SRC_isr endp

isr_ret

Common Interrupt Service Routine exit processing
DX = SCC base I/O address

To interrupted routine

isr_ret proc

pop ax ;get 1/0 address

pop di

pop si

pop cx

pop bx

mov al,WRo

out dx,al

mov al, reset_ius ;end of interrupt to SCC
out dx, al

CPAASM

lineXX_TBE

Transmit Buffer Empty Interrupt Service Routine. There is one of
these for each line. Since each line has identical requirements
on TBE, each of these jumps to a common TBE_isr

Nothing

AX = line table entry

1ine00_TBE proc ;Transmit Buffer Empty
ax isave register
mov ax,offset line00 i and setup line table offset

TBE_isr ;do common processing

Jmp
1ine00_TBE endp

line01_TBE proc ;Transmit Buffer Empty
push ax ;save register
mov ax,offset line0l ; and setup line table offset
Smp TBE_isr ;do common processing ...
line01_TBE endp
1ine02_TBE proc ;Transmit Buffer Empty
push ax ;save register
mov ax,offset line02 H and setup line table offset
jmp TBE_isr 7do common processing ..
1ine02_TBE endp
line03_TBE proc ;Transmit Buffer Empty
ax ;save register
mov ax,offset line03 H and setup line table offset
Jmp TBE_isr ;do common processing ...
1ine03_TBE endp
line04_TBE proc ;Transmit Buffer Empty
push ax ;save register
mov ax,offset line04 ; and setup line table offset
Smp TBE_isr ;do common processing
line04_TBE endp
1ine05_TBE proc ;Transmit Buffer Empty
ax ;save register
mov ax,offset line0S i and setup line table offset
$mp TBE_isr ;do common processing
1ine05_TBE endp
1ine06_TBE proc ;Transmit Buffer Empty
ax ;save register
mov ax,offset line06 i and setup line table offset
TBE_isr ;do common processing

Jmp
1ine06 TBE endp

CPA.ASM

;Name: lineXX_ESC

;Purpose: External Status Change Interrupt Service Routine. There is one of
; these for each line. Since each line has identical requirements

; on ESC, each of these jumps to a common ESC_isr.

;Entry: Nothing

JExit: AX = line table entry
1ine00_ESC proc ;External/Status Change
ax ;save register
mov ax,offset line00 ; and setup line table offset
jmp ESC_isr ;do common processing ...
1ine00_ESC endp
line01_ESC proc ;External/Status Change
push ax ;save register
mov ax,offset line0l ; and setup line table offset
5} ESC_isr ;do common processing

Jmp
1ine01_ESC endp

1ine02_ESC proc ;External/Status Change

push ax ave register
mov ax,offset line02 ; and setup line table offset
Jmp. ESC_isr ;do common processing
1ine02_ESC endp
1ine03_ESC proc ;External/Status Change
ax ;save register
mov ax,0ffset line03 ; and setup line table offset
3mp ESC_isr ;do common processing
1line03_ESC endp
1ine04_ESC proc ;External/Status Change
push ax ;save register
mov ax,offset line04 ; and setup line table offset
3mp ESC_isr ;do common processing
1ine04_ESC endp
1ine05_ESC proc ;External/Status Change
push ax isave register
mov ax,offset line0s ; and setup line table offset
jmp ESC_isr ‘do common processing
1ine05_ESC endp
1ine06_ESC proc ;External/Status Change
push ax ;save register
mov ax,offset 1ine06 ; and setup line table offset
j ESC_isr ;do common processing

jmp
1ine06_ESC endp

CPA.ASM

;Name: lineXX_RCA

;Purpose: Receive Character Available Interrupt Service Routine. There is one
: of these for each line. Since each line has identical requirements

: on RCA, each of these jumps to a common RCA_isr.

;Entry: Nothing

JExit: BX = line table entry
line00_RCA proc ;Receive Character Available
push ax ave register
mov ax,offset line00 and setup interrupt type
jmp RCA_isr o common processing
1ine00_RCA endp
line01_RCA proc eceive Character Available
ax ;save register
mov ax, offset line0l ; and setup interrupt type
Smp RCA_isr ;do common processing
1ine0l_RCA endp
line02_RCA proc ;Receive Character Available
push ax ;save register
mov ax, offset line02 and setup interrupt type
Jmp RCA_isr o common processing
line02_RCA endp
line03_RCA proc eceive Character Available
push ax ave register
mov ax,offset line03 and setup interrupt type
jmp RCA_isr ;do common processing
1ine03_RCA endp
1ine04_RCA proc /Receive Character Available
push ax ave register
mov ax,offset line04 and setup interrupt type
Jmp RCA_isr o common processing
1ine04_RCA endp
1line0S_RCA proc eceive Character Available
push ax ave register
mov ax, offset 1ine0S and setup interrupt type
jmp RCA_isr o common processing
1ine05_RCA endp
1ine06_RCA proc jReceive Character Available
push ax ;save register
mov ax,offset line06 and setup interrupt type
RCA_isr o common processing

Jmp
1ine06_RCA endp

CPAASM

;Name: lineXX_SRC
Purpose: Special Receive Condition Interrupt Service Routine. There is one
B of these for each line. Since each line has identical requirements

; on SRC, each of these jumps to a common SRC_isr.
jEntry: Nothing

JExit: AX = line table entry
1ine00_SRC proc ;Special Receive Condition
ax ;save register
mov ax,offset 1ine00 ; and setup interrupt type
SRC_isr ;do common processing

Jmp
1ine00_SRC endp

line0l_SRC proc ;Special Receive Condition
push ax isave register
mov ax,offset ; and setup interrupt type
Smp SRC_isr ;do common processing
1ine0l_SRC endp
1ine02_SRC proc ;Special Receive Condition
push ax ;save register
mov ax,offset line02 ; and setup interrupt type
Jmp SRC_isr ;do common processing .
line02_SRC endp
1ine03_SRC proc ;Special Receive Condition
push ax ;save register
mov ax,offset line03 ; and setup interrupt type
jmp SRC_isz ;do common processing ...
1ine03_SRC endp
line04_SRC proc ;Special Receive Condition
push ax ;save register
mov ax,offset line04 ; and setup interrupt type
3mp SRC_isr ;do common processing ...
1ine04_SRC endp
1ine0S_SRC proc ;Special Receive Condition
push ax 7save register
mov ax,offset line05 ; and setup interrupt type
mp SRC_isr ;do common processing .
1ine05_SRC endp
line06_SRC proc ;Special Receive Condition
push ax ;save register
mov ax,offset line06 ; and setup interrupt type
jmp SRC_isr ;do common processing
1ine06_SRC endp
CPA.ASM
;Name: vector_init

;Purpose: Initialize SCC interrupt vectors. Each vector requires 4 bytes.

; Since the SCC modifies bits 3, 2, and 1 of the base vector type, but
does not modify bit 0, every second vector is unused. The unused
vectors have already been initialized to point to an "invalid

; interrupt ISR" by the firmware, so they are not altered here.
;Entry: AX = base vector ype
JExit: Nothing

;Registers AX, BX, CX, SI, DI and ES altered

vector_init proc

shl ax, 1 ;calculate interrupt vector address

shl ax,1

mov ai,ax

xor ax, ax

mov es,ax ;ES:DI=> destination

mov si,offset vestor_tbl ;SI=> vector table

mov cx, [si)

add si,2

shr cx,1 ;CX = table length (words)

mov bx, cs ;setup segment address
vector_init_10:

~ movsw ;move vector offset

mov ax, bx

stosw

add di, 4 ;skip unused vector entxy

loop vector_init_10 ;continue
vector_init_9

ret
vector_init endp

7SCC Interrupt Vector Table

vector_tbl equ $
aw vector_tbl_end-$-2 ;table length
dw 1ine01_TBE
dw 1ine01_ESC
dw line01_RCA
dw 1ine01_SRC
aw 1ine00_TBE
dw 1ine00_ESC
dw 1ine00_RCA
dw 1ine00_SRC

aw 1ine03_TBE

CPAASM

dw 1line05_TBE
aw 1ine05_ESC
aw 1ine0S_RCA
aw 1ine05_SRC
aw line04_TBE
dw line04_ESC
aw line(4_RCA
dw 1ine04_SRC
1ine07_entry label word
dw 1ine07_TBE
dw 1ine07_ESC
dw 1ine07_RCA
aw 1ine07_SRC
dw 1ine06_TBE
dw 1ine06_ESC
dw 1ine06_RCA
aw 1ine06_SRC

vector_tbl_end equ H
1ine07_count equ (($-1ine07_entry)/2)

;Miscellaneous data and stack

db 'Comtrol HOSTESS 186 Sample Control Program' ,0
db 'Copyright (C) 1991 Comtrol Corp. *,0
ab ‘A1l rights reserved.',0
release equ s
db '1.00 .0
release_len equ s-release
msg_area db 16 dup (?) ;message area
public bos
bos label word ibottom of stack
ab 512 dup (2) ;stack size = 512 bytes
public tos
tos label word itop of stack
org 1000

public Comgq, Sysq

CPA.ASM

;Line table, one entry for each line

public 1ine00,1ine0l,line02,1ine03,1ine04,1ine05,1ine06, 1ine07
1ine00 line_entry <0004h, 0, 80h, 0cOh, 04h, 60h, bps9600,bps9600 shr 8,0,\
0,0,0,0ffset 1ine00_Txb,0,0,0ffset line00_Rxb,\
0,0,0,0>
1ine0l line_entry <0000h, 0, 80h, 0cOh, 04h, 60h, bps9600,bps9600 shr 8,0,\
0,0,0,0f€set line0l_Txb,0,0,0ffset line0l Rxb,\
0,0,0,0>
1ine02 line_entry <0084h, 0, 90h, 0cOh, 04h, 60, bps9600,bps9600 shr 8,0,\
0,0,0,0ffset line02_Txb,0,0,0ffset 1ine02_Rxb,\

,0,0,0>

line03 line_entry <0080h, 0,90h, 0cOh, 04h, 60h, bps9600,bps9600 shr 8,0, \
0,0,0,0ffset line03_Txb,0,0,0ffset line03_Rxb,\
0,0,0,0>

.line04 line_entry <0104h, 0, 0a0h, 0cOh, 04h, 60h, bps9600,bps9600 shr 8,0,\
0,0,0,0ffset line04_Txb,0,0,0ffset line0d_Rxb,\
0,0,0,0>

1ine05 line_entry <0100h, 0, 0a0h, 0c0h, 04h, 60h, bps9600, bps9600 shr 8,0, \
0,0,0,0ffset line05_Txb,0,0,0ffset line0S_Rxb,\
0,0,0,0>

line06 line_entry <0184h, 0, 0b0h, 0cOh, 04h, 60h, bps9600,bps9600 shr 8,0,\
0,0,0,0ffset line06_Txb,0,0,0ffset line06_Rxb,\
0,0,0,0>

line07 line_entry <0180k, 0, 0bOh, 0cOh, 04h, 60h, bps9600,bps9600 shr 8,0,\
0,0,0,0ffset line07_Txb,0,0,0ffset line07_Rxb,\
0,0,0,0>

;Transmit buffers, one for each line

public 1ine00_Txb,line0l_Txb,line02_Txb,line03_Txb,1line04_Txb
public 1ine0S_Txb,1ine06_Txb, 1line07_Txb
1ine00_Txb db Txb_size dup (2)

1ine01_Txb db Txb_size dup (?)
1ine02_Txb db Txb_size dup (?)
1ine03_Txb db Txb_size dup (2)
1ine04_Txb ab Txb_size dup (2)
1ine05_Txb ab Txb_size dup (2)
line06_Txb db Txb_size dup (?)
1ine07_Txb ab Txb_size dup (?)

iReceive buffers, one for each line

public 1ine00_Rxb,1ine0l Rxb,1line02_Rxb,line03_Rxb,line04_Rxb
public 1ine0S_Rxb,line06_Rxb, 1line07_Rxb

1ine00_Rxb db Rxb_size dup (?)

1ine01_Rxb ab Rxb_size dup (2)

1ine02_Rxb ab Rxb_size dup (?)

CP.EQU

jFile: cp.equ

;Purpose: Equates for sample control programs for HOSTESS 186.
7Company: Comtrol Corporation

;Release: 1.00, Craig Harrison - Original release.

;Date: 2-18-92

;Interrupt Controller (PIC) Registers
e

EOI_VAL 8000h ;end of interrupt value

INTI_type equ Odh ;system interrupt vector type
INTCTL equ 0££22h JPIC port

INTCTL1 equ 0££28h JPIC port for initialization command word
TIMER_INT_CTRL equ 0££32h stimer interrupt control register
;Timer registers

TIMER1_CNT equ 0f£££h 730/sec counter

TIMO_type equ 08h stimer 0 interrupt vector type
TIM1_type equ 12h ;timer 1 interrupt vector type
TMR1_CTRL_reg equ 0ffSeh ; mode/control register
TMR1_MAX_CNTB equ 0££5ch ; max count B

TMR1_MAX_CNTA equ 0££5ah ; max count A

TMR1_CNT_reg equ 0££58h ; count register

TMRO_CTRL_reg equ 0££56h ; mode/control register
TMRO_MAX_CNTB equ 0££54h ; max count B

TMRO_MAX_CNTA equ 0££52h ; max count A

TMRO_CNT_reg equ 0££50h ; count register

C2sint_reg equ 0e£60h ;COM uP to SYS uP interrupt register
c28int_hi equ 0 ;value to set interrupt line high
C2sint_low equ 0008h ;value to set interrupt line low
Txb_size equ 512 ;transmit buffer size

Txq_mask equ Txb_size-1

Rxb_size equ 2048 ;receive buffer size

Rxq_mask equ Rxb_size-1

base_vector equ 80h sbase interrupt vector type

;Message Queue Equates

msg_len equ 16 jmessage length
msgq_size equ 32 ;number of message queue entries
msgq_mask equ msgq_size-1

CP.EQU

;SCC register values
WR2

_ db 2
WR3_ db 2
WR4_ db 2
WRS_ db 2
WR1Z_ db 2
WR13_ db ?
WR15_ db 2
do 2 ;filler, keeps things on even boundaries
;Transmit queue data
Txq_head aw 2
Txq_tail aw 2
Txq_offset aw ?
JReceive queue data
Rxq_head dw 2
Rxq_tail dw 2
Rxq_offset aw 2
aw 2 jfiller
aw 2 filler
dw 2 jfiller
aw H ;filler
line_entry ends
line_entry_len equ size line_entry
;line_status definitions
line_active equ 0001h line is active
Tx_active equ 0002h jtransmit is active (char is going out)

;Message Queue definition

msgq_entry struc

msgq_head dw 2 ;queue head pointer
msgq_tail aw 2 ;queue tail pointer
msgq_area db msgq_size*msg_len dup (?) ;queue buffers

msgq_entry ends

CP.EQU

;SCC register equates
equ

WRO

WR1 equ 1
WR2 equ 2
WR3 equ 3
WR4 equ 4
WRS equ 5
WR6 equ 6
WRT equ 7
WR8 equ 8
WR9 equ 9
WR10 equ 10
WR11 equ 11
WR12 equ 12
WR13 equ 13
WR14 equ 14
WR15 equ 15
RRO equ 0
RR1 equ 1
RR2 equ 2
RR3 equ 3
RR8 equ 8
RR10 equ 10
RR12 equ 12
RR13 equ 13
RRLS equ 15

; Baud Rate Generator Time Constants - x16 Baud Rate Factor
; (based on a 4.9152 MHz clock)

bpsS50 equ 3070

bps75 equ 2046

bps110 equ 1394 ; 0.026 percent error
bps134 equ 1140 ; 0.001 percent error
bps150 equ 1022

bps300 equ 510

bps600 equ 254

bps1200 equ 126

bps1800 equ 83 ; 0.401 percent error
bps2000 equ 75 ; 1.06 percent error
bps2400 equ 62

bps3600 equ a1 ; 1.62 percent error
bps4800 equ 30

bps7200 equ 19 ; 1.75 percent error
bps9600 equ 14

bps19200 equ 6

CP.EQU

FHRERR AR A E KKK KKK AK A AR EKEHRREAAHE AKX AIX KA RK KRR A KA KA KK AR AR A KA K KR KA H kR KRR

iWrite Register Definitions (for basic asynchronous communications)

FRRRERA AR A KRR AR AR AR A RA KK AKAK XK AKX K AR AR AR

;Write Register 0 - command register
oh

reset_ext equ 1
reset_Tx_int equ 28h
error_reset equ 30n
reset_ius equ 38h

;Write Register 1 - Tx/Rx interrupt and data transfer mode definition

ext_int_enable equ 01h
Tx_int_enable equ 02h
parity_special equ 04h
Rx_int_enable equ 10n

iWrite Register 2 - interrupt vector

;Write Register 3 - Rx parameters and controls
01h

Rx_enable equ
Rx5_bit_char equ 00h
Rx7_bit_char equ 40n
Rx6_bit_char equ 80h
Rx8_bit_char equ 0c0h

iWrite Register 4 - Tx/Rx miscellaneous parameters and modes

parity_enable equ 01h
parity_even equ 02h
parity_odd equ 00h
one_stop_bit equ 04n
one$_stop_bits equ 08h
two_stop_bits equ oOch
x16_clock equ 40n
;Write Register 5 - Tx parameters and controls
RTS equ 02h
Tx_enable equ 08h
BREAK equ 10h
Tx5_bit_char equ 00h
Tx7_bit_char equ 20n
Tx6_bit_char equ 40h
Tx8_bit_char equ 60h
DTR equ 80h

iWrite Register 6 - sync character or SDLC address field

CP.EQU

;Write Register 9 - master interrupt control
0lh

VIS equ

NV equ 02h
pLC equ 04h
MIE equ 08h
status_lo equ 00h
status_hi equ 10n
reset_ch B equ 40h
reset_ch A equ 80h
hardware_reset equ 0cOh

jWrite Register 10 - miscellaneous Tx/Rx control bits

;Write Register 11 - clock mode control

Tx_clk_eq BRG equ 10n

Rx_clk_eq BRG equ 40n

;Write Register 12 - lower byte of baud generator time constant

;Write Register 13 - upper byte of baud generator time constant

;Write Register 14 - miscellaneous control bits

BRG_enable equ

BRG_eq_sys_clk equ 02h

iWrite Register 15 - external/status interrupt control

DCD_ie equ 08h

cTS_ie equ 20n

break_ie equ 80h

FEEEREKAAKKKAERERAKAK KK KA AKX K *EREERRERE

;Read Register Definitions (for basic asynchronous communications)

FERKE KKK KK RKKKE XA KEEAARERER AKX RE AR

;Read Register 0 - Tx/Rx buffer status and external status
equ 01lh

Rx_buffer
Tx_buffer equ 04h
DCD_ equ 08h
crs_ equ 20n
break_cond equ 80h
;Read, Register 1 - special receive condition status
parity_error equ 10h
overrun_error equ 20n
framing_error equ 40h

7Read Register 2 - interrupt vector

Bibliography

The following references were used as research material for this manual:

Advanced Micro Devices, Inc.,® Z8530/Z85C30 SCC Serial Communications
Controller Technical Manual

Intel ® iAPX 86/88, 186/ 188 User’s Manual
Hardware Reference

Intel ® iAPX 86/88, 186/ 188 User’s Manual
Programmer’s Reference

Intel ® 80186 /188, 80C186/C188 Hardware Reference Manual.

Zilog Inc.,® Z8030/ 28530 SCC Serial Communications Controller
Technical Manual

Bibliography

Glossary

controller

control program
Cs:IP

device driver
dual-ported RAM
host

Vo
IRQ

SCC

The controller is the Hostess 186 board itself.

The control program is the program downloaded to the
controller that controls the /0.

. Code Segment register:Instruction Pointer register location

used in debugging.

A device driver is the code running on the host that
interfaces with the /0 device.

Dual-ported RAM is the memory on the Hostess 186
controller. It can be accessed by both the host and the
controller.

The host is the computer in which the controller is placed.
/0 stands for input and output.

The IRQ is the interrupt vector number used to
interrupt the host computer.

The Serial Communications Controller (SCC) for the
Hostess 186 is the AMD AmZ8530 or the Intel 82530 chip.

Glossary

Index

-rpl, 113

-rs2, 113

-rs3, 113

AL register, 96
AMD AmZ8530, 1
AT/PC MODE, 73
AX register, 96

B (Byte Mode), 126

Baud rate generator time constants,
23,43, 158

Bibliography, 161

boot flag, 90

Close, 21, 139

Command table, 29
Comg, 66, 154
Configure_line, 140
CONFIG_QUERY, 96
Control program, 163
Control register initialization, 48
Control word register, 105
Count register value, 104
Count register, 104
Cp.equ, 41, 156

Cpa.asm, 135

CPA.COM, 133

Cpe.c, 16

CPC.H, 22

Cpcstart.asm, 26

D (Dump), 127

Debug/Reset switch, 122
Debug/Reset switch, 131
Debugger access through software
interrupts, 124

DEBUGGER, 96

DEBUG_PORT, 96

Deq_Com_msg, 30, 145
Deq_Tx_data, 17, 143
Developer’s license agreement, iii
Development system, 111

Device driver, 163

DMA channel 1, 69

DMA, 1

Download, 52, 109

DPLOADER, 110, 112, 133
DPLOADER.C, 46, 47

DSR, 108

Dual-port memory addresses, 85
Dual-port memory window offset, 79
Dual-port RAM, 4, 163

Enable_line, 140
Enq_Sys_msg, 29, 144
EOI, 121

EPROM, 4

ESC_isr, 11, 18, 146

Firmware data area map, 90
Firmware release number, 90

G (Go), 128
Get dual port memory base address,
49

Get VO base address, 50
Get_line, 141
Glossary, 163

Hiclose(linenum). 61

Index

I (Input), 128

10, 163

VO addresses, 81

0 control block, 103

10 map, 82

VO_base, 82

VO_base+0, 71

VO_base+1, 71

V0O_base+3, 70

Identification number, 91
Index register, 82

INT 20h, 124

INT 22h, 124

Int 27h, 120

Intel 80186™, 1

Intel 82530, 1

Interaction flag, 90, 109
Internal VO addresses, 84
Interrupt controller registers, 41
Interrupt control register, 94
Interrupt service routine, 94, 95
Interrupt vector types, 95
Int_sys, 21

Int_sys, 139

Invalid interrupt field, 91
Invoke Turbo Debugger Remote
kernel, 54

Invoke_tdrem(), 119

IRQ, 1, 80, 93, 163

IRQ7, 97

ISR, 9, 93, 94, 121, 130
Isr_ret, 31, 148

Limited warranty, iv

Line table, 39, 66, 155

Line table data structure, 42, 156
LineXX_ESC, 33, 150

LineXX_RCA, 34, 151

LineXX_SRC, 36, 152

LineXX_TBE, 31, 149

Tinna atatne Aafinitiane 99 49 1R7

SCC O addresses, 107

SCC interrupt vector table, 38, 153
SCC interrupt vectors, 99, 100
SCC port map, 90

SCC register defines, 23

SCC register equates, 43, 158
SCC vector modification, 99
scc, 107, 163

SCC_base interrupts, 97
Sce_init, 142
Single-stepping, 121

Sliding window size, 74
Sliding window, 79

Spl 7 () kernel call, 70
SRC_isr, 11, 19, 148

Symbol table, 118

Sysq, 66, 154

System address, 73, 76
System VO addresses, 81
SYSTEM, 109

System_isr, 9, 28, 138

T (Trace), 129

TBE, 121

TBE_isr, 10, 17, 146
TDSTRIP.EXE, 118

TIMER 0, 97

TIMER 1, 97

Timer 2, 69, 103

Timer registers, 41

Timer registers, 156

Timer count register, 103, 104
Timer mode/control word, 103
Timerl_isr, 12, 28, 137
Transmit buffers, 40, 66, 155
TSAMPLE.MK, 68

Turbo Debugger, 111

U (Unassemble), 129

Main loop, 9

Make file, 118

Maximum count registers ,103
Memory addresses, 85, 86
Memory map, 87

Message queue definition, 43, 157
Message queue equates, 41, 156
Modem status register, 108

NMI, 96, 121
Non-8086 instructions, 130
Null_cmd, 19, 138

O (Output), 128
01d config map, 90
Open, 20, 139

PIC, 41, 121

R (Register), 129
RAM_QUERY, 96
RCA_isr, 11, 18, 147

Read register deﬁm’tjons, 25, 45, 160

README ASCII file, xi

Receive buffers, 40, 67, 155
Register, 73, 76, 79, 80
Remote “kernel,” 119

Remote system ,111
Replacement, v

Reset board, 51

Return Material Authorization

Index

Hostess 186 Programmer’s Reference

Developer’s License Agreement, Warranty, and Technical Support

Developer’s License Agi

At Comtrol, we want to encourage you to develop software products for our
hardware products, so we developed this Developer’s License
Agreement.

The software lied with the Pr s Toolkit is protected by United States
copyright law and international copyright treaties. In order for Comtrol to protect
its copyrights, we need some limitations on reproduction and distribution, so here
they are:

1. The software may only be used to develop software products that will operate
with Comtrol brand hardware and software.

2. You may not reproduce nor distribute the source code contained in the
Programmer’s Toolkit.

3. Any reproduced or modified Programmer’s Toolkit software distributed in
executable object code form must bear either Comtrol’s copyright notice (for
example, Copyright 1991, 1992 Comtrol Corporation), or your own copyright
notice.

Other than these restrictions, programs that you write using the materials in the
Programmer’s Toolkit may be used, distributed, modified, or licensed by you as you
decide.

Sample programs are provided to help you start programming right away. You may
edit, modify, or otherwise incorporate these programs and routines; and you may
redistribute and license them for use by your customers without any other license
fee or restriction.

Of course, you are solely r ible for your own pr ing and you agree to
hold us harmless from all claims, liability, and damage arising from you own
products which include any Comtrol Software. Remember that this software is
designed for use only with Comtrol Products. It will not function properly with any
other brand of controller.

Limited Warranty

Hostess 186 Programmer’s Reference

PRODUCT UNTIL YOU HAVE CALLED COMTROL’S CUSTOMER SERVICE DEPARTMENT
AND OBTAINED A RETURN AUTHORIZATION NUMBER.

The entire and exclusive liability and remedy for breach of this Limited Warranty
shall be limited to the repl of defective disk s) or d tation and
shall not include or extend to any claim for or right to recover any other damages,
including but not limited to, loss of profits, data or use of the software, or special,
incid 1 or ial d or other similar claims, even if Comtrol has
been specifically advised of the possibility of such damages. In no event will
Comtrol’s liability for any damages to you or any other person ever exceed $500.00,
regardless of any form of the claim.

COMTROL CORPORATION SPECIFICALLY DISCLAIMS ALL OTHER WARRANTIES,
EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO, ANY IMPLIED WARRANTY
OF MERCHANTABILITY NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE,
OR ARISING FROM ANY COURSE OF DEALING OR PERFORMANCE BETWEEN YOU AND
COMTROL. Specifically, Comtrol makes no representation or warranty that the
software is fit for any particular purpose and any implied warranty of
merchantability is limited to the ninety-day duration of the Limited Warranty
covering the physical diskette(s) and physical documentation only (and not the
software) and is otherwise expressly and specifically disclaimed. THE SOFTWARE IS
PROVIDED AS IS.

This limited warranty gives you specific legal rights; you may have others which
may vary from state to state. Some states do not allow the exclusion of incidental or

ial d or the limitation on how long an implied warranty lasts, so
some of the above may not apply to you.

Limit of Liability

IN NO EVENT WILL COMTROL BE LIABLE FOR ANY DAMAGES, COST OR EXPENSE,
INCLUDING WITHOUT LIMITATION, A LOSS OF PROFIT, USE OR DATA, OR ANY SPECIAL,
INDIRECT, DIRECT CONSEQUENTIAL OR INCIDENTAL DAMAGES REGARDLESS OF THE
BASIS OF YOUR CLAIM, INCLUDING NEGLIGENCE IN EXCESS OF $500.00.

Miscellaneous

This License and Limited Warranty shall be construed, interpreted and governed by
the laws of the State of Minnesota and any action hereunder shall be brought only
in Minnesota. If any provision is found void, invalid, or unenforceable it will not
affect the validity if the balance of this License and Limited Warranty which shall
remain valid and enforceable according to its terms TR anv ramedy harenndor ic

Hostess 186 Programmer’s Reference

DFARS 52.227-7013 applicable to commercial computer software. All rights not
specifically granted in this statement are reserved by Comtrol.

Replacement

To qualify for replacement under the warranty terms, the original purchaser must
follow the procedure outlined below:

1. COMTROL CORPORATION must be notified in writing within thirty (30) days of
the date that the defect is discovered. COMTROL CORPORATION will then issue a
Return Material Authorization (RMA) Number which the purchaser must
include with all correspondence and display on the outside of the shipping
container when returning the Product.

2. A written description of the defect together with proof of the purchase date
must be shipped with the Product.

3. All Product must be shipped freight and insurance prepaid, in the original
shipping container, or in a container providing equal or better protection, with
the Return Material Authorization (RMA) Number displayed on the outside of
the container in prominent manner. Ship the Product to:

COMTROL CORPORATION
2675 Patton Road, Dock D
St. Paul, Minnesota 55113

COMTROL CORPORATION will return a Product which qualifies under this warranty

freight and insurance prepaid. COMTROL CORPORATION will replace Products which

do not qualify under the terms of this warranty at the option of the purchaser, in
which case the purchaser will pay the cost of repair, and return freight and
insurance.

Technical Support

COMTROL CORPORATION provides lifetime support for all its products. If you have
questions about your Hostess 186 controller, please call or fax COMTROL at:

Toll free: 1-800-926-6876 (US)
Phone: (612) 6317654 (US), or (44) 869-323-220 (UK)
FAX: 612-631-8117 (US). or (44) 869-323-211 (UK)

Hostess 186 Programmer’s Reference

Table of Contents

List of Figures and Tables viii
Before You Begin ix
Conventions Used in this Guide xii

CHAPTER 1 - Hostess 186 Controller Features and Architecture ...
Hostess 186 Controller Features
Hostess 186 Architecture

CHAPTER 2 — Sample Programs 7

Reading Program Listings 7

How the Control Program Works 8

Dual-port RAM Configuration for CPC.EXE 13
CPC.C 16
CPC.H 22
CPCSTART.ASM 26
CP.EQU 41
DPLOADER.C 46
How DPLOADER Works 46
HITERM.C 55
How HITERM Works 55
Invoking HITERM 56
HILIB.ASM 59
TSAMPLE.MK 68

CHAPTER 3 — Preview: Initializing the Controller, the Control Registers, and Memory... 69
Controller State at Startup 69
o " e

and lizing the Controller 70
CHAPTER 4 — Control Registers Used on the Hostess 186..
Regi Features
Control Regi #1
Control Register #2
Control Regi #3
Control Regi #4
CHAPTER 5 ~ Input/Output Add 81
Setting the /0 Addresses 81
Writing to I/O_Base + Offset 82
Hostess 186 Internal /0 Addresses 84

CHAPTER & — HActace 108 Nial.nart Maman: o

Hostess 186 Programmer’s Reference

CHAPTER 7 — Interrupts, continued

Writing an Internal Interrupt Service RoUtinecc.cceeuvcnirnivecvurneccuecnna 94
Initializing Hostess 186 Interrupt Vectors 95
Hostess 186 Interrupt Vectors Defined 96
The Interrupt Mask Regi 98
Finding the SCC Interrupt Vector Types 99
CHAPTER 8 — Timers 103
Enabling Timers 104
Disabling Timers 106
CHAPTER 9 — Serial Communication Controller Port Communication 107

Talking to the SCC Ports
Reading the Modem Status R

CHAPTER 10 — Downloading and Executing a Control Program
Downloading a Control Program
Using the DPLOADER Program

CHAPTER 11 — Using Turbo Debugger®
Setting Up the Debugging Envire Hardware
Configuring Symbol Tables

Invoking the Remote Turbo Debugger Kernel
Notes on Using Turbo Debugg

How to Connect the Debug/Reset Switch to the Controller..........ccccceeccucnee

CHAPTER 12 — Using the Hostess 186’s Firmware Debugger
Debugger Setup
Invoking the Firmware Debugg
S y of Debugger C
Debugger Command Definitions
B (Byte Mode)

4

I (Input)
O (Output)
R (Regi

11y
W (Word Mode)
Notes on Using the Firmware Debugger
How to Connect the Debug/Reset Switch to the Controllerccccecvireuunee

T (Trace)
U (U

Hostess 186 Programmer’s Reference

List of Figures and Tables

Figure I. Location of the part number SHCKeT.ovveereeerveereeeseeeenseenennns ix
Figure 1. Hostess 186 four-port controller.
Figure 2. Hostess 186 eight-port controller.
Figure 3. Hostess 186 block di
Figure 4. Hostess 186 standard memory map.
Figure 5. Data flow diagram for the control program CPC.C.
Figure 6. Data flow diagram for DPLOADER.C..................
Figure 7. Data flow diagram for HITERM.C.
Figure 8. Control register #1 format.
Figure 9. Four Hostess 186 controllers addressed under one megabyte...... 74
Figure 10. Control register #2 format. 76
Figure 11. Control register #3 format. 79
Figure 12. How the system “sees” the Hostess 186’s local dual-port RAM 88
Figure 13. How the Hostess 186 “sees” its own RAM.
Figure 14. Interrupt mask register format.
Figure 15. Format of the timer’s mode/control word register. .
Figure 16. Modem status register format.
Figure 17. Cabling setup between the remote and development PCs............
Figure 18. Location of the devel header. 1
Figure 19. Cabling setup between a terminal and a development PC.
Figure 20. Location of the development header.

Table 1. Hostess 186 components and features.
Table 2. Line table number and corresponding Hostess 186 port.
Table 3. 64K Dual-port memory map.
Table 4. Line table map.
Table 5. Control register #1 sliding window size format.
Table 6. Memory locations addressed under sixteen meg:
Table 7. Memory locations addressed under one megabyte.
Table 8. Control register #3 window offset format.
Table 9. Control register #4 interrupt values.
Table 10. Hostess 186 VO addresses
Table 11. Hostess 186 /O map
Table 12. Index with RAM enabled or disabled.
Table 13. Hostess 186 internal V0 addresses. ..
Table 14. Under one megabyte memory add

Table 15. Above one megabyte memory addresses...............ceeeereeseererrererens
Table 16. Hostess 186 memory map
Table 17. Firmware data area map
Table 18. Hostess 186 interrupt vector types
Tahle 19 80186 hard g and thaiv

Hostess 186 Programmer’s Reference

Before You Begin

This book details the features and functionality of revision A of the Hostess 186
controller, part number HO8600nnA, where nn is 04 for the four-port controller, and
08 for the eight-port controller. A white sticker found on the lower right corner of
the solder side of the controller shows the revision.

Component side

Solder side

Part number sticker

igure I. Location of the part number sticker.

If your Hostess 186 has a different revision, call COMTROL to receive the
corresponding Programmer’s Reference.

The purpose of this reference manual is to explain the functionality of the
Hostess 186 controller. A diskette titled Sample Programs includes examples
written in both the C and 80186 assembly languages. If you are not familiar with
either language, this reference is not for you. There are several third-party C and
bly progr ing books ilable; use those books to increase your technical
expertise. Another required book is Advanced Micro Devices’ Z8530/Z85C30 Serial
Communications Controller Technical Manual or Zilog Incorporated’s Z8030/Z8530
SCC Serial Communications Controller Technical Manual. These books explain the
functionality of the Z85C30 serial communications controller, and also include

sample programs.

Future Hardware Changes

Hostess 186 Programmer’s Reference

“I Never Read Manuals”

If you don’t read manuals — you should at least read the “Sample Programs”
chapter. After you read this chapter, you can read those chapters in the book that

are of interest to you.

This manual contains the following chapters:

Chapter 1:
Hostess 186 Controller Features
and Architecture

Chapter 2:
.Sample Programs

Chapter 3:
Preview - Initializing the Controller,
the Control Registers, and Memory

Chapter 4:
Control Registers Used on the
Hostess 186

Chapter 5:

Input/Output Addresses
Chapter 6:

Hostess 186 Dual-port Memory

Chapter 7:
Interrupts

Chapter 8:
Timers

Chapter 9:
Serial Communication Controller
Port Communication

Chantar 10-

Architectural review of the hardware
functionality.

Full listings explanations of the enclosed
sample programs.

An overview of setting up the controller
using software.

How to set up the Hostess 186’s control
registers.

Technical descriptions of the I/O addresses
you will use.

Understanding DPRAM.

Setting up interrupts.

Setting up timers and the values to use.

Technical description of the SCC registers.

Hostess 186 Programmer’s Reference

Chapter 12:
Using the Hostess 186’s Firmware ~ How to use the firmware debugger.

Debugger

Appendix A:

Assembly Language Listings The listing for the assembly language
programs.

Read README on the Hostess 186 S le progr: i — you should

rograms d
read the ASCII file README on the “Sample Programs” diskette included with your
manual. This file lists the latest changes and errata to the sample programs,
listings, and this manual.

Hostess 186 Programmer’s Reference

Conventions Used in this Guide

The sample program installation instructions use diagrams to represent what
appears on the system administrator's terminal. A screen typeface shows what to
enter at a prompt. These instructions use a few uniform conventions:

® the menus you use appear boxed in a different typeface. For example:
RENOVE LIsT QuIT

Install software

Tuesday October 10, 1989 12:]

Products Currently Installed

The Operating System
Software Development System

—

® the commands that you enter appear in a different typeface. For example:

Instrugtions Screen megsage
Th prdmpt asks for the name of the device driver to install, type TR.”

SF anter ' to Teturn o the menu: VLR —g The response you enter.

Press <Enter> after you type-in
acommand or response.

After you enter a command, select a menu option, or respond to a prompt, always
press the <Enter> or <Return> key. If you do not have to press <Enter> or
<Return>, the instructions will explicitly state this.

CHAPTER 1 - Hostess 186 Controller Features and Architecture

Hostess 186 Controller Features

The Hostess 186 controller is an intelligent serial communications board with four or
eight ports. It has an eight megahertz (MHz), highly-integrated, 16-bit NMOS Intel
80186" processor. This processor is object code compatible with the Intel 8086 and
8088™ microprocessors.

The 80186 processor has the following integrated an 8237 four-ch 1
DMA controller, an 8251 UART communications controller, three 8237 timer-counters,
an 8259 interrupt controller, and a refresh controller. The Hostess 186 controller has
128 kilobytes (Kbytes) of dual-ported RAM.

The IRQs available are 3, 4, 5, 9, 10, 11, 12, or 15.

There are four control registers on the Hostess 186. These registers control the
addressing, memory window size, interrupts, and mode of operation.

Two programmable timers are available to the control program. The timers can be
used to generate interrupts to the control program, at a frequency of 16 to 200
interrupts per second.

The next table summarizes the components and features of the Hostess 186
controller.

Table 1. Hostess 186 components and features.

Components and Features:

+ 8 MHz Intel 80186 processor

« Four AMD AmZ78530 or Intel 82530 Serial Ci ication Controllers, dable to
eight SCCs

+ 128 Kbytes dual-ported RAM

» Switch-definable VO addresses

* Software-definable memory addresses

* Software-definable IRQs

« Two programmable timers

* Software-definable 8- or 16-bit memory transfers

TN o4 a3 O LAV s ean T PO LA PRI

Features and Architecture

Controller DIP Serial Communication
EPR?MS Proces&r /Switcn Controllers

A @ ’ 'iasao
8530

Bus 100-pin
connector connector
Figure 1. Hostess 186 four-port controller.
EPROMs Controller DIP Serial Communication
Processor Switch Controllers
AN / p)
& 4
853
O a6 8530 0
8530 8530

191 camo coromTion

Bus 100-pin
connector connector
igure 2. Hostess 186 eight-port controller.

Features and Architecture

Hostess 186 Architecture

The following block diagram shows the major hardware components of the Hostess
186 controller.

Block Diagram for
the Hostess 186 Controller

§ Intel 80186™:
3-position DIP switch 8 MHz,
for VO addressing 16-bit microprocessor.
8 input intenrupt controllers,
2 timers.
o Serial 100-pin
high-densit
EPROM c%nmers comecor
iz
L | | .
l— Local Address/Data Bu:

Dynamic
RAM
128K
'—7 dons
Control
registers
e}

System card edge connector | ___.__I @D
(address, data control) 1}

Riocnra 8 Hnetecs 18R hlack diacram

Features and Architecture

The EPROM block contains 32K bytes mapped at the top of the 80186’s one megabyte
of memory space. This firmware contains code for the following:

80186 bootstrap instruction

80186 initialization

Programmable interrupt controller (PIC) initialization

Timer initialization

Interrupt vector initialization

Interrupt service routines

Diagnostics for Serial Communication Controllers (SCCs) and memory
Terminal debugger

Borland’s Turbo Debugger® remote kernel

.

e e e 0000

Although it is possible for users to produce their own EPROMs for the Hostess 186,
COMTROL does not recommend it. Instead, users may customize the operation of the
Hostess 186 by developing their own control programs and downloading them to the
Hostess 186.

The Serial Communication Controllers block contains 8530 Serial Communication
Controller chips. These devices implement the four or eight serial ports found on the
Hostess 186 controller. The SCCs are mapped into the 80186’s /O address space. For
more information about programming the SCCs, please read Advanced Micro
Devices’ Z8530/Z85C30 Serial Communications Controller Technical Manual or
Zilog Incorporated’s Z8030/Z8530 SCC Serial Communications Controller
Technical Manual. .

The memory block contains 128K bytes of dual-port RAM mapped at the bottom of the
80186’s memory space. A small portion of this memory is reserved for the interrupt
vector table and firmware usage. The remainder may be used to customize the
Hostess 186 to the user’s lication. The users lish this by developing and
downloading their own control programs into the dual-port RAM.

Description: Starting
Address:
unused 10080h
firmware data area 10000h
unused 00c00h
firmware work space 00400h
interrupt vector table 00000h
Figure 4. Hostess 186 standard memory map (as addressed by the local processor).

Features and Architecture

The V0 block contains functions that can be performed by L0 writes or reads from
the system’s processor, as follows:

¢ Write a control register index.

¢ Write to a control register.

¢ Enable or disable dual-port RAM.

¢ Interrupt the 80186.

* Reset the Hostess 186.

The control register block contains the functions that can be performed by V0 writes
from the system processor. The control registers are accessed in a two-step process:
first an index is written, then the control register value is written. The control
register functions are:

* Select the base address of dual-port RAM in the system’s memory space.

* Select the size of the system’s window into dual-port RAM.

¢ Select the portion of dual-port RAM visible in the system’s window.

¢ Select the interrupt request line the Hostess 186 uses.

The edge connector block contains the connectors which plug into the system’s 1O
channel connector. The Hostess 186 may be used in an 8-bit or a 16-bit slot.

The /0 DIP switch box contains the three-position DIP switch you set for the Hostess
186’s /O address.

Features and Architecture

CHAPTER 2 - Sample Programs

Reading Program Listings

The primary goal of this book is to explain the functionality of the Hostess 186
controller. Included with this book is the Sample Programs diskette. This diskette
contains the source listings and executable files for a simplified control program
model that works on the Hostess 186.

This book uses both C and 80186 assembly language examples in each chapter.
Control programs often are a mix both high-level and low-level code. For this reason
this chapter, and for most part this entire book, tries to use examples written in
both the C and assembly languages.

COMTROL encourages you to use these files on the diskette and examine how the
control program works. There are two sets of control programs:

* CPC.EXE — written in the C and the 80186 assembly languages, and

* CPA.COM — written only in 80186 assembly language.

This chapter lists the CPC.EXE source code. Appendix A lists the CPA.COM source
code. Both sets are functionally equivalent.

The executable control program model (CPC.EXE or CPA.COM) runs on the
Hostess 186. It opens, closes, reads, and writes to any asynchronous line on the
controller.

These files make up the CPC.EXE control program model:

CPC.C — the source code for the control program model.

CPC.EXE — the executable control program model.

CPC.H — the header file for CPC.C.

CPCSTART.ASM — the startup and initialization routines, in assembly code.
CP.EQU — the equate file for CCCSTART.ASM.

CPC.TDS — the symbol table (for debugging purposes).

DPLOADER.C — the source code for the loader program.

DPLOADER.EXE ~ the executable loader program.

e e e o e

Sample Programs

How the Control Program Works

Whgn}!xe Hosyess 186 initially powers up, its processor (the local processor) executes
the mxt’lalxzatmn and diagnostic code out of the firmware. After this process, the
system’s processor downloads (writes) the control program into dual-port memory
(DPM) at the local processor’s address 1000:80. Next, the system processor
interrupts the local processor, and the firmware’s interrupt service routine invokes
the control program by jumping to the 1000:80 address. The first section of the
control program’s code initializes the segment registers, stack, interrupt vectors,
timer, and several fields of the firmware user area. '

CPC.C Data Flow:

interrupt

ESC_isr
read
character
external
status

message

deq_Tx_data @
reset
externall
error | status
reset
cmd
close line @
open Iir&

interrupt
v

Sample Programs

After initializing these data str , the control program enters an infinite
processing loop. The term “line” refers to any one of the eight serial lines (ports) on
the Hostess 186 ller. The number the lines from 0 to 7.

Each serial line has a lme-table entry associated with it.

Table 2. Line table number and corresponding Hostess 186 port.
Line Hostess 186
Tables: port:
line 0 table port 1
line 1 table port2
line 2 table port3
line 3 table port 4
line 4 table port 5
line 5 table port 6
line 6 table port 7
line 7 table port 8

The main loop sequentially checks each line’s line-table entry, line-status field. If
the LINE_ACTIVE bit is not set, processing continues with the next line. If the
LINE_ACTIVE bit is set, the line status is checked to see if the TX_ACTIVE bit is set.
The TX_ACTIVE bit indicates that the SCC is busy sending a character and it cannot
accept another character. If the SCC is free, the main loop calls the deq_Tx_data
routine to write the next character (if any) from the current line’s transmit buffer to
the SCC’s internal transmit buffer. (Consider these loop op as background
processing. Interrupt service routines (ISRs) handle all other processing in the
control program.)

void deq Tx_data(LINE_ENTRY_T *lt_p)
{
int tail;

tail = 1lt_p->Txq_tail;

if (1t_p=->Txq_head == tail) /* Tx queue empty */

return;
1t_p->line_status |= TX_ACTIVE; /* indicate transmit active */
outp(lt_p->io_base + 2,*(lt_p->Txq + tail)); /* write char to SCC */

1t_p->Txq_tail = (tail + 1) & TXQ MASK; /* update tail pointer */
}

During the control program’s initialization phase, an interrupt service routine
named system_isr teplaces the ﬁrmware routme that first invoked the control
program. system_isrisr for p sent by the system
processor to the control program in the Comq buffer. Four messages have been

Aafinad: n111 AmA (Anac nathing) Anan ~laca and in+ ecuve (an avamnla of

Sample Programs

system_isr proc
pusha ;save registers

system isr_02:

call deq Com_msg ;Comm Processor message waiting ?

e system_isr_20 ; no ... exit

mov bx,offset msg_area

mov al, [bx] ;get command

xor ah,ah ;jclear upper byte

shl ax, 1 ;double the command value

mov bx,offset command_tbl ;BX=> command table

add bx, ax joffset into table

cmp bx,offset command_tble ;valid command ?

jnc system_isr_10 ; no ... continue

mov ax,offset msg_area ;parameter is ptr to msg_area

push ax i pass it

call word ptr [bx) ;invoke C command processor

add sp.2 ;remove parameter from stack
system_isr_10:

Smp system_isr_02 scheck for another message
system_isr_20:

mov dx, INTCTL send of interrupt to PIC

mov al,EOI_VAL

out dx,al

popa

iret
system_isr endp
;Command table
command_tbl equ s

aw _null_cmd ;0 - null command

aw “open ;1 - open a line

dw “close ;2 - close a line

dw Tint_sys ;3 - generate interrupt to system
command_tble equ s
E les of syst ide pr ing for open and close are contamed in HILIB.ASM,
the hiopen and hiclose ines illustrate the syst: ide pr for the

open and close messages.

The function hiopen opens a serial line on the Hostess 186. After a line has been
opened, data may be transmitted to that line. To transmit a character, the system
processor writes the character to that line’s transmit buffer, using the normal queue
operations, as used in the HILIB.ASM, hiwrite routine.

Mha aanteal nenmeamls main Inan will vamava tha charastar fram tha anenae and

Sample Programs

int TBE_isr(LINE_ENTRY_T *lt_p)
{

int scc; /* SCC command register address */
scc = lt_p->io_bas /* get SCC command register address */
1t_p->line_status &* Oxf££f - TX_ACTIVE; /* Tx is now inactive */

outp (scc, WRO) ; /* reset pending Tx interrupt */

outp (scc, RESET_TX_INT) ;
return(scc) ;
}

After a line has been opened, data may also be received from that line. When the

SCC receives a serial character, it issues an interrupt to the local processor, which
invokes the RCA_isr routine for that line. RCA_isr reads the character from the
SCC and places it in that line’s receive buffer queue.

int RCA_isr(LINE_ENTRY_T *1t_p)
{

int sce; /* SCC command register address */
unsigned char ch; /* character read from SCC */

int head; /* Rx queue head pointer */

int num_full; /* number Rx queue locations filled */
scc = lt_p->io_base; /* get SCC command register address */
ch = inp(scc+2); /* read character from SCC */

head = 1lt_p->Rxq_head;
if ((num_full = head - lt_p->Rxq tail) < 0) /* num queue locations full */
num Full += (RXQ MASK + 1); /* adjust for queue wrap */
if (num_full < RXQ MASK) /* if Rx queue has empty space */
{
(1t_p->Rxq + head) = ch; / add received character to queue */
1t_p->Rxq_head = (head + 1) & RXQ_MASK; /* bump head pointer */

}
return(scc) ;
}

The system processor may then remove that character from the queue, as used in
HILIB.ASM’s hiread routine.

The SCC’s are also capable of generating interrupts for external status changes or
special receive conditions. These interrupts are handled by CPC.C’s interrupt service
routines ESC_isr and SRC_isr:

/* Function: ESC_isr */
int ESC_isr(LINE_ENTRY_T *1t_p)
{

int scc; /* SCC command register address */
unsigned char status; /* saves the external status */
mmn = ve mnia means 1% mar SR AammanA vamictar address %/

Sample Programs

/* Function: SRC_isr

int SRC_isr(LINE_ENTRY_T *1t_p)

{
int scc; /* SCC command register address */
unsigned status; /* saves the SRC status */
scc = 1t_p->io_base; /* get SCC command register address */
outp (scc,RR1) ; /* read the SRC status */

status = inp(scc);
/* Do Special Receive Condition processing here */

outp (sce, WRO) ; /* for insurance */
outp (scc, ERROR_RESET) ; /* issue error reset command */
return (sce) ;

}

The local processor’s timer 1 is initialized by the control program to generate an
interrupt 30 times a second. These are handled by the interrupt service routine
timerl_isr, which does nothing except increment the word count found at local
address 1000:7C.

; Name: timerl_isr

timerl_isr proc

push ax isave registers

push dx

inc word ptr cs:7ch ;increment word

mov dx, INTCTL ;end of interrupt to PIC
mov al,EOI_VAL

out dx,al

pop dx ;recover registers

pop ax

iret

timerl_isr endp

Sample Programs

Dual-port RAM Configuration for CPC.EXE

Information stored in dual-port memory (DPM) includes:
General information about the controller as defined by firmware (the firmware
data area)

2. Area for for the ications processor (Comq)

3. Area for messages for the system processor (Sysg).

4. Line tables for each of the 16 ports that describe the port.

5. Transmit and receive buffer for each of the 16 lines.

Transmit and receive (circular) buffer sizes:
1. Transmit buffer — 512 bytes.

2. Receive buffer — 2048 bytes.

To write data to the transmit buffer:

1. Write data to the buffer at the head.

2. Update the head pointer in the line table.
To read data from the receive buffer:

1. Read data from the buffer at the tail.

2. Update the tail pointer in the line table

The control programs use only 64K of dual-port memory, beginning at the local
processor’s address 1000:0. The system processor views this same memory
beginning at address D000:0. The following is a map of this area of dual-port
memory.

Table 3. 64K Dual-port memory map.
Offset Length in
in hex: Use: hex bytes:

Firmware Data Area:

0 Processor interaction flag 2
2 Boot/activity flag
4 Configuration map (obsolete)
6 Firmware release number
E Control program release number
16 Reserved 4
1A DRAM map 4
1E §CC map 4
22 Controller 1D 4
Sample Programs
Offset Length in
in hex: Use: hex bytes:
Communication Message Queue:
1000 head pointer
1002 tail pointer 2
1004 message area 200
System Message Queue:
1204 head pointer 2
1208 tail pointer 2
120A message area 200
1408 filler 8
Line Tables:
1410 line 0 table 20
1430 line 1 table 20
1450 line 2 table 20
1470 line 3 table 20
1490 line 4 table 20
14B0 line 5 table 20
14D0 line 6 table 20
14F0 line 7 table 20
Transmit Buffers:
1510 line 00 200
1710 line 0 200
1910 line 0 200
1B10 line O 200
1D10 line 04 200
1F10 line 05 200
2110 line 06 200
2310 line 07 200
Receive Buffers:
2510 line 00 00
2D10 line 01 00
3510 line 02 00
3D10 line 03 00
4510 lina N4 Eal)

Sample Programs

Table 4. Line table map.

Offset Length in
in hex: Use: hex bytes:
0 SCC base I/O address 2

2 line status 2

4 write register 2 value 1

5 write register 3 value 1

6 write register 4 value 1

7 write register 5 value 1

8 write register 12 value 1

9 write register 13 value 1

A write register 15 value 1

B filler, keep pointers on even address 1

C transmit buffer head pointer 2

E transmit buffer tail pointer 2

10 transmit butfer DPM offset 2

12 receive buffer head pointer 2

14 receive buffer tail pointer

16 receive bufter DPM offset

18 filler 8

20 end of line table data

The pages that follow show the listings for:

CPC.C,

CPC.H,

CPCSTART.ASM,

CP.EQU,

DPLOADER.C,

HILIB.ASM,

HITERM.C, a terminal emulation program, and
TSAMPLE. MK, the “make” file for these sample programs.

e e o000 e

Read through these listings to get a feel for how a control program works with the
controller. You will see some of this code again as examples in the chapters that
follow.

CPC.C

File: cpe.c

Purpose: Sample C language control program for the HOSTESS 186.
Supports open, close, read, and write to any asynchronous line.

Company: Comtrol Corporation

Release: 1.00, Craig Harrison - Original release

*xx/
#include <dos.h>
#include "cpc.h"
LINE_ENTRY_T *line(16);
/* Function prototypes */
void deq Tx_data(LINE_ENTRY_T-*1lt_p);
int TBE_isr (LINE_ENTRY_T *1lt_p);
int RCA_isr (LINE_ENTRY_T *lt_p);
int ESC_isr (LINE_ENTRY_T *lt_p):
int SRC_isr(LINE_ENTRY_T *1lt_p);
void null_cmd(char *msg_area);
void open(char *msg_area);
void close(char *msg_area);
void int_sys(char *msg_area);
main ()
{
int linenum;
LINE_ENTRY_T *1t_p; /* ptr to line table entry */
/* Initialize pointers to line tables */
line[0] = (LINE_ENTRY_T *)0x1410; line[1] = (LINE_ENTRY_T *)0x1430;
line[2) = (LINE_ENTRY_T *)0x1450; line(3] = (LINE_ENTRY_T *)0x1470;
line[4] = (LINE_ENTRY_T *)0x1490; line[5] = (LINE_ENTRY_T *)0x14b0;
line[6] = (LINE_ENTRY T *)0x14d0; line(7] = (LINE_ENTRY_T *)0x14£0;
/* Main processing loop, handles Tx characters only */
for(linenum = 0;;linenum = (linenum + 1) & 0x07) /* infinite loop */
{
1t_p = line(linenum]; /* get ptr to line table entry */
if(!(1t_p->line_status & LINE_ACTIVE)) /* line active? */
continue; /* no - move on to next line */
if (1t_p->line_status & TX_ACTIVE) /* transmit active? */
continue; /* yes - move on to next line */

deq_Tx_data (1t_p); /* send char from xmit queue */

/ *x *xx/
/* Function: deq_Tx_data */
/* Purpose: Remove character from transmit queue, write it to SCC. */
/* SCC Tx buffer must be empty before calling this function. */
/* Entr: lt_p - Pointer to line table entry */
/* Exit: Nothing */
void deq_Tx_data(LINE_ENTRY_T *lt_p)
{

int tail;

tail = 1t_p->Txq tai

if (1t_p->Txq_head == tail) /* Tx queue empty */

return;
1lt_p->line_status |= TX_ACTIVE; /* indicate transmit active */
outp(lt_p->io_base + 2,*(lt_p->Txq + tail)); /* write char to SCC */

lt_p->Txq_tail = (tail + 1) & TXQ MASK; /* update tail pointer */

/ e /
/* Function: TBE_isr */
/* Purpose: Common Transmit Buffer Empty Interrupt Service Routine. */
/* This clears the Tx_active flag in the line table to indicate */
IAd that a character is no longer in the process of being */
/* transmitted.To keep the time in the ISR short data writes */
/* to the SCC are handled in the main loop. */
/* Entry: lt_p - Pointer to line table entry "/
/* Exit: Returns SCC command register address */

int TBE_isr(LINE_ENTRY_T *1t_p)
{

int sce; /* SCC command register address */
scc = lt_p->io_base; /* get SCC command register address */
1t_p->line_status &= Oxffff - TX_ACTIVE; /* Tx is now inactive

outp (scc, WR0) ; /* reset pending Tx interrupt */

outp (scc, RESET_TX_INT) ;
return (scc) ;

CpPC.C
/
/* Function: ESC_isr */
/* Purpose: Common External Status Change Interrupt Service Routine. This */
shows how to get the external status, but doesn't do any */
processing on it. */
lt_p - Pointer to line table entry */
Returns SCC command register address */
int ESC_isr(LINE_ENTRY_T *1lt_p)
{
int sce; /* SCC command register address */
unsigned char status; /* saves the external status */
scc = 1t_p->io_base; /* get SCC command register address */
status = inp(scc); /* read the external status */
/* Do External Status Change processing here */
outp (scc, WRO) ; /* reset external status interrupts */
outp (scc, RESET_EXT) ;
return(scc);
}
JrrRR R Rk oxx *rkA Rk
/* Function: RCA_isr */
/* Purpose: Common Receive Character Available Interrupt Service Routine. */
/* Add received character to Rx queue if there is room, else */
/* throws it away. */
/* Entry: lt_p - Pointer to line table entry */
/* Exit: Returns SCC command register address */

int RCA_isr(LINE ENTRY_T *1t_p)
{

int scc; /* SCC command register address */
unsigned char ch; /* character read from SCC */

int head; /* Rx queue head pointer */

int num_full; /* number Rx queue locations filled */
scc = 1t_p->io_base; /* get SCC command register address */
ch = inp(scc+2); /* read character from SCC */

head = lt_p->Rxq_head;

if ((num_full = head - lt_p->Rxq_ tail) < 0) /* num queue locations full */
num full += (RXQ MASK + 1); /* adjust for queue wrap */

if (num_full < RXQ MASK) /* if Rx queue has empty space */

CPC.C

/ /
/* Function: SRC_isr */
/* Purpose: Common Special Receive condition Interrupt Service Routine. */
/* This shows how to get the special receive condition status, */
/% but doesn't do any processing on it. */
/* Entry: 1t_p - Pointer to line table entry */
/* Exit: Returns SCC command register address */
int SRC_isr(LINE_ENTRY_T *1t_p)
{
int scc; /* SCC command register address */
unsigned status; /* saves the SRC status */
scc = lt_p->io_base; /* get SCC command register address */
outp (scc, RR1) ; /* read the SRC status */
status = inp(scc);
/* Do Special Receive Condition processing here */
outp (scc, WRO) ; /* for insurance */
outp (scc, ERROR_RESET) ; /* issue error reset command */
return(scc);
)
/
/* Function: null_cmd (0) */
/* Purpose: Handle unimplemented command */
/* Entry: Pointer to message area */
/* Exit: Nothing */
void null_cmd(char *msg_area)
{
}
CPC.C
* /
/* Function: open (1) */
/* Purpose: Open a line for asynchronous communications */
/* Entry: msg_area+l = line number */
1% msg_area+2 = WR3 parameters (Rx character size) */
/* msg_area+3 = WR4 parameters (stop bits, parity) */
/% msg_area+4 = WR5 parameters (Tx character size) */
/* msg_area+5 = WR12 parameter (lower byte of BRGTC) */
Ad msg_area+6 = WR13 parameter (upper byte of BRGIC) */
/* Exit: Nothing */
void open(char *msg_area)
LINE_ENTRY_T *1t_p; /* ptr to line table entry */
unsigned char msgb; /* a byte from msg_area */
int sce; /* SCC command register address */
1t_p = line[msg_area(1]]; /* get ptr to line table entry */
scc = 1t_p->io_base; /* get SCC command reg address */
/* Configure line table entry using message passed from system */
1t_p->WR3_ = msg_area[2) & OxcO; /* WR3, isolate Rx char size */
1t_p->WR4_ = msg_area[3] & Ox0f; /* WR4, isolate stop bits/parity*/
msgb = msg_area(4) & 0x60; /* WRS, isolate Tx char size */
1t_p->WRS_ = (lt_p->WRS_ & (0x££-0x60)) | msgb; /* update WRS Tx char size*/
1t p->WR12_ = msg_area[5); /* WR12, BRGT low byte */
1t_p->WR13_ = msg_areal[6); /* WR13, BRGT high byte */
/* Initialize SCC from line table entry */
outp (scc, WR4) ; /* stop bits/parity + clock mode */
outp (scc, 1t_p->WRA_ | X16_CLOCK) ;
outp (scc, WR2) ; /* base interrupt vector type */
outp (scc, 1t_p->WR2_) ;
outp (scc, WR3) ; /* Rx character size */
outp (scc, lt_p->WR3_);
outp (scc, WRS) ; /* Tx char size, modem/break */
outp (scc, 1t_p->WRS_ | RTS); /* make sure RTS is active */
outp (scc, WRD) ; /* interrupt control */
outp (scc, STATUS_LO+VIS) ;
outp (scc, WR11) ; /* clock sources */
outp (scc, RX_CLK_EQ_BRG+TX_CLK_EQ_BRG) ;
outp (scc, WR12) ; /* lower byte of BRGIC */
outp (scc, 1t_p->WR12_);
outp (scc, WR13) ; /* upper byte of BRGIC */
outp (scc,1t_p->WR13_);
outp (scc, WR14) ; /* BRG source */
outp (scc, BRG_EQ_SYS_CLK+BRG_ENABLE) ;
outp (scc,WR3) ; /* enable receive */

outp(scc,lt_p->WR3_ | RX_ENABLE);
outp (scc, WRS) ; /* enable transmit */

CPC.C

/* Enable interrupts */

outp (scc, WR1S) ; /* external/status interrupt control */
outp(scc, 1t_p->WR15_);

outp (sce, WRO) ; /* for insurance reset external status interrupts */
outp(scc, RESET_EXT) ;

outp (sce, WR1) ; /* interrupt enables */

outp(scc, EXT_INT_ENABLE+TX_INT_ ENABLE+PARITY SPECIAL+RX_INT_ENABLE) ;

outp (scc,WR9) ; /* master interrupt enable */

outp(scc,MIE+STATUS_LO+VIS) ;

/ /
/* Function: close (2) */
/* Purpose: Close a serial line */
/* Entry: msg_area+l = line number */
/* Bxit: Nothing */
void close(char *msg_area)
{
LINE_ENTRY_T *1t_p; /* ptr to line table entry */
int scc; /% SCC command register address */
1t_p = line([msg_area(1]]; /* get ptr to line table entry */
scc = 1t_p->io_base; /* get SCC command reg address */
outp (scc, WR1) ; /% disable all interrupts */
outp(scc,0) 7
lt_p->line_status = 0; /* disable all in line_status */
)
/ /
/* Function: int_sys (3) */
/* Purpose: Generate an interrupt to the system. This would probably never */
/* be executed as a command from the system by is included here to */
VAd show how to interrupt the system. *
/* Entry: Pointer to message area */
/* Exit: Nothing */
void int_sys(char *msg_area)
outp (C2SINT_REG, C2SINT_LOW) ; /* set interrupt line low */
outp (C2SINT_REG, C2SINT_HI) ; /* set interrupt line high */

CPCH

/ -

File: cpe.c

Purpose: Header file for sample C language control program for the HOSTESS i
and HOSTESS 186.

Company: Comtrol Corporation

Release: 1.00, Craig Harrison - Original release

Date: 8-23-91

/x -

Line Table data structure */
/* This matches the assembly language structure line_entry in cp.equ */

struct line_entry
(
int io_base; /* SCC base I/0 address */
unsigned line_status; /* line status (defined below) */

/* SCC register values */
unsigned char :

unsigned char
unsigned char
unsigned char
unsigned char

/* write register 2
/* write register 2
/* write register 2
/* write register 2 */
/* write register 2
unsigned char /* write register 2
unsigned char /* write register 2
unsigned char £ill1; /* filler for word allignment */

/* Transmit queue data */
int Txq_head;

int Txq_tail;

char *Txq;

/* Receive queue data */
int Rxq_head;

int Rxq_tail;

char *Rxq:

Yi
typedef struct line_entry LINE_ENTRY_T;

/* -- line_status definitions */
#define LINE_ACTIVE 0x0001 /* line is active */
#define TX_ACTIVE 0x0002 /* transmit is active (char is going out) */

CPCH

/% ===-- SCC register defines *
#define WRO
#define WRL 1
#define WRZ 2
#define WR3 3
#define WR4 4
#define WRS 5
#define WR6 6
#define WR7 7
#define WRS 8
#define WR9 5

#define WR10 10
#define WR11l 11
#define WR12 12
#define WR13 13
#define WR14 14
#define WR1S 15
#define RRO 0
#define RR1 1
#define RR2 2
#define RR3 3
#define RR8 8
#define RR10 10
#define RR12 12
#define RR13 13
#define RR15 15
/% ————— Baud Rate Generator Time Constants - x16 Baud Rate Factor =------- */

/* (based on a 4.9152 MHz clock) */
#define BPS50 3070

#define BPS75S 2046

#define BPS110 1394 ; 0.026 percent error
#define BPS134 1140 ; 0.001 percent error
#define BPS150 1022

#define BPS300 510

#define BPS600 254

#define BPS1200 126

#define BPS1800 83 ; 0.401 percent error
#define BPS2000 75 ; 1.06 percent error
#define BPS2400 62

#define BPS3600 41 i 1.62 percent error
#define BPS4800 30

#define BPS7200 19 ; 1.75 percent error
#define BPS9600 14

#define BPS19200 6

#define BPS38400 2

#define BPS56000 1 ; 74.3 percent error
#define BPS76800 0

CPCH

/* Write Register 1 - Tx/Rx interrupt and data transfer mode definition */
#define EXT_INT_ENABLE 0x01
#define TX_INT_ENABLE 0x02
#define PARITY SPECIAL 0x04
#define RX_INT_ENABLE 0x10

/* Write Register 2 - interrupt vector */

/* Write Register 3 - Rx parameters and controls */
#define RX_ENABLE

#define RXS_BIT_CHAR 0x00
#define RX7_BIT_CHAR 0x40
#define RX6_BIT_CHAR 0x80
#define RX8_BIT_CHAR 0x0c0

/* Write Register 4 - Tx/Rx miscellaneous parameters and modes */

#define PARITY_ENABLE 0x01
#define PARITY_ EVEN 0x02
#define PARITY_ODD 0x00
#define ONE_STOP_BIT 0x04
#define ONES_STOP_BITS 0x08
#define TWO_STOP_BITS 0x0c
#define X16_CLOCK 0x40
/* Write Register S5 - Tx paramerameters and controls */
#define RTS 0x02
#define TX_ENABLE 0x08
#define BREAK 0x10
#define Tx5_BIT_CHAR 0x00
#define Tx7_BIT_CHAR 0x20
#define Tx6_BIT_CHAR 0x40
#define Tx8_BIT_CHAR 0x60
#define DTR 0x80

/* Write Register 6 - sync character or SDLC address field */
/* Write Register 7 - sync character or SDLC flag */
/* Write Register 8 - transmit buffer */

/* Write Register 9 - master interrupt control */
#define VIS

#define NV 0x02
#define DLC 0x04
#define MIE 0x08
#define STATUS_LO 0x00
#define STATUS_HI 0x10
#define RESET_CH_B 0x40

#Aafine RRQRET CH 2 avan

CPCH

/* Write Register 12 ~ lower byte of baud generator time constant */
/* Write Register 13 - upper byte of baud generator time constant */
/* Write Register 14 - miscellaneous control bits */

#define BRG_ENABLE 0x01

#define BRG_EQ_SYS_CLK 0x02

/* Write Register 15 - external/STATUS interrupt control */

#define DCD_IE 0x08
#define CTS_IE 0x20
#define BREAK_IE 0x80
VAR Read Register Definitions (for basic asynCHronous communications) */

/* Read Register 0 - Tx/Rx BUFFER STATUS and external STATUS */
#define RX_BUFFER 0x01

#define TX_BUFFER 0x04
#define DCD_ 0x08
#define CTS_ 0x20
#define BREAK_COND 0x80

/* Read Register 1 - special receive condition STATUS */
#define PARITY_ERROR 0x10

#define OVERRUN_ERROR 0x20

#define FRAMING_ERROR 0x40

/* Read Register 2 - interrupt vector */

/* Read Register 3 - interrupt pending STATUS */

/* Read Register 8 - receive data register */

/* Read Register 10 - miscellaneous STATUS bits */

/* Read Register 12 - value stored in WR12 */

/* Read Register 13 - value stored in WR13 */

/* Read Register 15 - value stored in WR1S5 */

/* - Other defines */
#define TXQ_MASK 512-1 /* Tx queue pointer mask */

#define RXQ_MASK 2048-1 /* Rx queue pointer mask */

#define C2SINT_REG 0xef60 /* COM uP to SYS uP interrupt register */
#define C2SINT_HI 0 /* value to set interrupt line high */
#define C2SINT_LOW 0x0008 /* value to set interrupt line low */

CPCSTART.ASM

page 60, 80

P
iFile: cpestart.asm

jPurpose: Startup code for C language control program for HOSTESS 186.
;Company: Comtrol Corporation

JRelease: 1.00, Craig Harrison - Original release

.186

MODEL tiny ;Must use the simplified segment directives with tiny
;jmodel. This causes C language global variables to
‘have offsets relative to the start of the _TEXT segment.
;Otherwise these variables are given offsets relative to
7DGROUP, which is incorrect because we are initializing
;DS to CS, wl’._ACh is _TEXT, not DGROUP.

;The technique used here is to keep everything in the
_TEXT segment so that no fixups are needed. This way
the .EXE header can be thrown away on download without
;doing the normal .EXE file relocation.

include cp.equ

assume cs:_TEXT,ds:_TEXT

extrn _main:near
extrn _null cmd:near, _open:near, _close:near, _int_sys:near
extrn _TBE isr:near, _ESC_isr:near, _RCA isr:near, _SRC_isr:near

.CODE

org Oh
;The first 80h bytes are the "firmware user area" defined by the HOSTESS 186
; firmware

public i_flag
aw

i_flag ? iprocessor interaction flag
boot_flag dw ? ;boot/activity flag
cfg_map aw 2 onfiguration map
fw_release db 8 dup (2) irmware release number
sw_release db 8 dup (2) ;control program release number

dd ? jreserved
dram_map dd 2 RAM map

dd 2 CC map

dd ? board ID

db ? sinvalid interrupt flag

an 2 sinvalid intarriot tvoe

;Initialize segment registers, interrup
start: cli idis
mov ax,cs
mov ds,ax
mov ss,ax
mov sp,offset tos
xor ax, ax
mov es, ax
mov bx, INT1_type*4
mov ax,offset system isr
mov es: [bx],ax
mov ax,cs
mov es: [bx+2],ax
mov bx, TIM1_type*4
mov ax,offset timerl isr
mov es: [bx],ax
mov ax,cs
mov es: [bx+2],ax
mov ax, TIMER_INT_CTRL
mov dx, ax
mov ax, 0000h
out dx, ax
mov dx, TMR1_MAX_CNTA
mov ax, TIMER1_CNT
out dx,ax
mov dx, TMR1_CTRL_reg
mov. ax,0e001t
out dx, ax
mov ax, base_vector
call vector_init
mov ax,ds
mov rax
mov di,offset i_flag
mov (di],SS5aah
mov di,offset boot_flag
mov (di]), 0f£££fh
mov di,offset sw_release
mov si,offset release
mov cx, release_len
rep movsb
CPCSTART.ASM

CPCSTART.ASM

t vectors, etc.
able interrupts while initializing them

;set up data segment
; and stack segment
; and stack pointer

;setup system interrupt vector
;setup timer 1 intr vector

jwrite to interrupt timer cotrol reg.

;jallow interrupts for timer 1.

:30/sec
;enable timer 1 max count A

iBX = base vector type
;initialize vector table

;set up extra segment
;DI=> interaction flag
;restore interaction flag

;indicate control program active

;move software release number
7 to shared memory

Name: timerl_isr

Entry: Nothing
Exit: Nothing

timerl_isr proc

push ax
push dx

inc word ptr cs:7ch
mov dx, INTCTL

mov ax,EOI_VAL

out dx, ax

pop

pop ax

iret

timerl_isr endp

Purpose: Process interrupt from timer 1.
increments a word in dual port RAM to demonstrate that its working.

Doesn't do anything useful, just

;save registers

;increment word
;jend of interrupt to PIC

;recover registers

Name: system_isr

;Purpose: Process interrupt from
JEntry: Nothing

JExit: Nothing

system_isr proc
pusha

system_isr_02:

call deq_Com msg
jc system isr_20

mov bx, offset msg_area
mov al, [bx]

xor ah,ah

shl ax,1

mov bx, offset command_tbl
add bx, ax -
cmp bx, offset command_tble
nc system_isr_10

mov ax,offset msg_area
push

call word ptr [bx]

add sp, 2

system_isr_10:
Jmp system_isr_02
system_isr_20:
mov dx, INTCTL

mer av RAT war

sytem processor

;save registers

;Comm Processor message waiting ?
i ono ... it

;get command
;clear upper byte
;double the command value
;BX=> command table
joffset into table
;valid command ?

i no ... continue

jparameter is ptr to msg_area
; pass it

;invoke C command processor
;remove parameter from stack
;check for another message

;end of interrupt to PIC

CPCSTART.ASM

;Command table

command_tbl equ s

dw null_cmd - null command

dw “open - open a line

aw “close - close a line

dw _int_sys - generate interrupt to system
command_tble e
; Name : enq_Sys_msg

;Purpose: Add mesSage to System Processor queue
jEntry: Nothing

Exit: carry set if queue is full, else

: carry clear

enq_Sys_msg proc

push ax ;save registers
push bx
mov bx,offset Sysq BX=> system queue data
mov ax, (bx] .msgq_head et queue head
inc ax ;bump pointer
and ax, msgq_mask ; and mask it
cmp ax, [bx) .msgq_tail 7is queue full ?
ste ; (assume it is)
jz enq_Sys_msg_10 ; yes ... exit
push cx ;save additional registers
push si
push di
mov ax, (bx] .msgq_head ;get queue head again
mov cx,msg_len ;jcalculate message offset
mul cl
lea di, [bx) .msgq_area
add di, ax ;got DI
mov si,offset msg_area ;got SI
rep movsb jmove message queue area
mov ax, [bx] .msgq_head jget queue head again
inc ax ump pointer
and ax, msgq_mask and mask it
mov {bx] .msgq_head, ax ;update queue head
cle jreturn carry clear
pop ai
pop si
pop cx
enq_Sys_msg_10:
CPCSTART.ASM
iName: deq_Com_mnsg

;Purpose: Remove message from Communications Processor queue
JEntry: Nothing

JExit: carry set if queue is empty, else

; carry clear

deq_Com_msg proc

push ax ;save registers
push bx
mov bx, offset Comg /BX=> comm queue data
mov ax, [bx] .msgq_tail iget queue tail
cmp ax, (bx] .msgq_head ;is queue empty ?
stc ; (assume it is)
jz deq_Com_msg_10 ; yes ... exit
push ex ;save additional registers
push si
push di
mov cx,msg_len ;calculate message offset
mul cl
lea si, [bx] .msgq_area
add si,ax sgot SI
mov di,offset msg_area ;got DI
rep movsb jmove message local area
mov ax, [bx] .msgq_tail jget queue tail again
inc ax sbump pointer
and ax, msgq_mask ; and mask it
mov [bx] .msgq_tail,ax ;update queue tail
pop di
pop si
pop cx

deq_Com_msg_10:
pop bx
pop ax

ret
deq_Com_msg endp

CPCSTART.ASM

Name: isr_ret

;Purpose: Common Interrupt Service Routine exit processing
JEntry: AX = SCC base I/0 address

JExit: To interrupted routine

isr_ret proc

mov dx, ax jget I/0 address
mov al,WRo

out dx,al

mov al, reset_ius jend of interrupt to SCC
out ax,al

mov dx, INTCTL send of interrupt to PIC
mov ax, EOI_VAL

out dx, ax

popa .

iret

isr_ret endp

;Name: lineXX_TBE

;Purpose: Transmit Buffer Empty Interrupt Service Routine. There is one of
; these for each line. Since each line has identical requirements
; on TBE, each of these calls a common TBE_isr C language function.
;Entry: Nothing

JExit: To isr_ret with AX = SCC base address (returned from TBE_isr)

1ine00_TBE proc ransmit Buffer Empty

pusha ave registers
mov ax,offset _line00 ine table offset is parameter
push ax pass it

call _TBE_isr o common processing in C

ada sp. 2 ;remove parameter from stack

j isr_ret sdo common exit processing

Jmp
1ine00_TBE endp

1line0l_TBE proc ransmit Buffer Empty

ave registers

mov. ax,offset _line0l iline table offset is parameter
push ax pass it
call _TBE isr o common processing in C
add sp, 2 iremove parameter from stack
Imp isr_ret ;do common exit processing
e01_TBE endp
1ine02_TBE proc ;Transmit Buffer Empty
pusha isave registers
CPCSTART.ASM
1ine03_TBE proc ;Transmit Buffer Empty
;save registers
mov ax,offset _line03 ;line table offset is parameter
push ax ; pass it
call _TBE_isr ;do common processing in C
add sp,2 ;remove parameter from stack
jmp isr_ret ;do common exit processing
1ine03_TBE endp
line04_TBE proc ;Transmit Buffer Empty
pusha ;save registers
mov ax,offset _line04 iline table offset is parameter
push ax ; pass it
call _TBE isr ;do common processing in C
add sp.2 jremove parameter from stack
Jmp isr_ret ;do common exit processing
line04_TBE endp
line05_TBE proc ;Transmit Buffer Empty
pusha isave registers
mov ax,offset _line0S 7line table offset is parameter
push ax ; pass it
call _TBE_isr ;do common processing in C
aad Sp.2 ;remove parameter from stack
mp isr_ret ;do common exit processing
1ine05_TBE endp
1ine06_TBE proc ;Transmit Buffer Empty
pusha ;save registers
mov ax,offset _line06 ;line table offset is parameter
push ax ; pass it
call _TBE_isr ;do common processing in C
add Sp, 2 ;remove parameter from stack
Smp isr_ret ;do common exit processing
1ine06_TBE endp
line07_TBE proc ;Transmit Buffer Empty
pusha isave registers
mov ax,offset _line07 ine table offset is parameter
push ax pass it
call _TBE_isr o common processing in C
add sp.2 ;remove parameter from stack
isr_ret ;do common exit processing

mp
1ine07_TBE endp

CPCSTART.ASM

;Name: 1lineXX_ESC

;Purpose: External Status Change Interrupt Service Routine. There is one of
; these for each line. Since each line has identical requirements
on ESC, each of these calls a common ESC_isr C language function.
Nothing

To isr_ret with AX = SCC base address (returned from ESC_isr)

1ine00_ESC proc xternal/Status Change

pusha isave registers
mov ax,offset _line00 ;line table offset is parameter
push ax pass it
call _ESC_isr o common processing in C
add sp,2 ;remove parameter from stack
Smp isr_ret ;do common exit processing
1ine00_ESC endp
line01_ESC proc ;External/Status Change
pusha ;save registers
mov ax,offset _line0l ine table offset is parameter
push ax pass it
call _ESC_isr o common processing in C
add 5p, 2 ;remove parameter from stack
jmp isr_ret ;do common exit processing
1ine01_ESC endp
line02_ESC proc ;External/Status Change
pusha ave registers
mov. ax,offset _line02 ne table offset is parameter
push ax pass it
call _ESC_isr ;do common processing in C
add sp,2 ;remove parameter from stack
jmp isr_ret 7do common exit processing
1ine02_ESC endp
line03_ESC proc xternal/Status Change
pusha ave registers
mov ax,offset _line03 ine table offset is parameter
push ax pass it
call _ESC_isr ;do common processing in C
add Sp.2 ;remove parameter from stack
Smp isr_ret 7do common exit processing
line03_ESC endp
1ine04_ESC proc JExternal/Status Change
pusha ave registers
mov ax,offset _line04 ine table offset is parameter
push ax ; pass it
call _ESC_isr o common processing in C
o = n mmmmat o Evam obanl
CPCSTART.ASM
1line0S_ESC proc ;External/Status Change
sha isave registers
mov ax,offset _line05 ine table offset is parameter
push ax pass it
call _ESC_isr o common processing in C
add sp.2 jremove parameter from stack
jmp isr_ret ;do common exit processing
line05_ESC endp
1ine06_ESC proc jExternal/Status Change
pusha ;save registers
mov ax,offset _line0§ ine table offset is parameter
push ax pass it
call _BSC_isr o common processing in C
add sp, 2 iremove parameter from stack
jmp isr_ret ;do common exit processing
1ine06_ESC endp
1line07_ESC proc xternal/Status Change
pusha ave registers
mov ax,offset _line07 ;line table offset is parameter
push ax pass it
call _ESC_isr ido common processing in C
add Sp,2 ;remove parameter from stack
mp isr_ret ;do common exit processing
1ine07_ESC endp
iName: lineXX_RCA
;Purpose: Receive Character Available Interrupt Service Routine. There is one
i of these for each line. Since each line has identical requirements
; on RCA, each of these calls a common RCA_isr C language function.
Nothing -
To isr_ret with AX = SCC base address (returned from RCA_isr)
1line00_RCA proc ;Receive Character Available
pusha ;save registers
mov ax,offset _line00 line table offset is parameter
push ax pass it
call _RCA_isr do common processing in C
add Sp,2 ;remove parameter from stack
isr_ret ;do common exit processing

jmp
1ine00_RCA endp

1inad1 RCA nrac ‘Reraiva Charanter Availabla

CPCSTART.ASM

line02_RCA proc eceive Character Available

pusha ;save registers

mov ax,offset _line02 ine table offset is parameter
push ax ; pass it

call _RCA_isr o common processing in C

add Sp.2 ;remove parameter from stack
3mp isr_ret ;do common exit processing
1ine02_RCA endp

line03_RCA proc eceive Character Available

pusha save registers
mov ax,offset _line03 ;line table offset is parameter
push ax pass it

call _RCA_isr o common processing in C

add Sp,2 ;remove parameter from stack

j isr_ret ;do common exit processing

mp
1ine03_RCA endp

1ine04_RCA proc jReceive Character Available
pusha isave registers
mov ax,offset _line04 ine table offset is parameter
push ax pass it
call _RCA_isr o common processing in C
add sp,2 ;remove parameter from stack

Jmp isr_ret ;do common exit processing
1ine04_RCA endp

line05_RCA proc ;Receive Character Available

pusha ave registers

mov ax,offset _line0S ine table offset is parameter
push ax pass it

call _RCA_isr o common processing in C

add sp.2 ;remove parameter from stack

Jmp isr_ret ;do common exit processing
1ine05_RCA endp

line06_RCA proc eceive Character Available

pusha ave registers
mov ax,offset _line06 ine table offset is parameter
push ax pass it
call RCA_isr jdo common processing in C
add sp.2 ;remove parameter from stack
jmp isr_ret ;do common exit processing
1ine06_RCA endp
1ine07_RCA proc ;Receive Character Available
pusha ;save registers
mov. ax,offset _line07 ine table offset is parameter
push ax pass it
~al ROA dar :dn common orocessing in C
CPCSTART.ASM
lineXX_SRC

Special Receive Condition Interrupt Service Routine. There is one
of these for each line. Since each line has identical requirements
on SRC, each of these calls a common SRC_isr C language function.
Nothing

To isr_ret with AX = SCC base address (returned from SRC_isr)

1ine00_SRC proc ;Special Receive Condition

pusha save registers
mov ax,offset _line00 ;line table offset is parameter
push ax ; pass it
call _SRC_isr ;do common processing in C
add Sp.2 ;remove parameter from stack
jmp isr_ret ;do common exit processing
1ine00_SRC endp
1ine01_SRC proc . ;Special Receive Condition
pusha save registers
mov ax,offset _line0l line table offset is parameter
push ax ; pass it
call _SRC_isr ;do common processing in C
add Sp.2 ;remove parameter from stack
jmp isr_ret ;do common exit processing
1ine01_SRC endp
1ine02_SRC proc ;Special Receive Condition
pusha ;save registers
mov ax,offset _line02 ;line table offset is parameter
push ax ; pass it
call _SRC_isr ;do common processing in C
add Sp.2 ;remove parameter from stack
mp isr_ret jdo common exit processing
1ine02_SRC endp
1ine03_SRC proc ;Special Receive Condition
pusha ;save registers
mov ax,offset _line03 ;line table offset is parameter
push ax ; pass it
call _SRC_isr ;do common processing in C
add sp, 2 ;remove parameter from stack
mp isr_ret ;do common exit processing
1ine03_SRC endp
1ine04_SRC proc ;Special Receive Condition
pusha ;save registers
mov ax,offset _line04 ;line table offset is parameter
push ax pass it

call _SRC_isr 7do common processing in C

CPCSTART.ASM

1ine05_SRC proc pecial Receive Condition

pusha ;save registers

mov ax,offset _line05 ;line table offset is parameter

push ax ; pass it

call _SRC_isr o common processing in C

add sp,2 ;remove parameter from stack
isr_ret ;do common exit processing

Jmp
1ine05_SRC endp

1ine06_SRC proc Special Receive Condition

usha ;save registers
mov ax,offset _line06 iline table offset is parameter
push ax pass it
call _SRC_isr do common processing in C
add sp,2 iremove parameter from stack
jmp isr_ret ;do common exit processing
1ine06_SRC endp
1line07_SRC proc ;Special Receive Condition
pusha ;save registers
mov ax,offset _line07 ;line table offset is parameter
push ax ; pass it
call _SRC_isr ;do common processing in C
add sp,2 ;remove parameter from stack
3 isr_ret ;do common exit processing

mp
1ine07_SRC endp

;Name: vector_init
;Purpose: Initialize SCC interrupt vectors. Each vector requires 4 bytes.

; Since the SCC modifies bits 3, 2, and 1 of the base vector type, but
; does not modify bit 0, every second vector is unused. The unused

; vectors have already been initialized to point to an "invalid

B interrupt ISR" by the firmware, so they are not altered here.
JEntry: AX = base vector ype

JExit: Nothing

jRegisters AX, BX, CX, SI, DI and ES altered

vector_init proc
shl

ax,1 ;calculate interrupt vector address
shl ax,1
mov di,ax
xor ax, ax
mov es,ax JES => destination

mov si,offset vector_tbl ;SI=> vector table
mov cx, [si)

add si, 2

shr ex,1 JCX = table length (words)
mov bx, cs ;setup segment address

vector init 10:

CPCSTART.ASM

;8CC Interrupt Vector Table

vector_tbl equ $
dw vector_tbl_end-$-2 ;table length
dw 1ine01_TBE
dw line01_ESC
dw 1ine01_RCA
aw 1ine01_SRC
dw 1ine00_TBE
aw 1ine00_ESC
aw 1ine00_RCA
dw 1ine00_SRC
dw 1ine03_TBE
aw 1ine03_ESC
aw 1ine03_RCA
dw 1ine03_SRC
dw line02_TBE
dw line02_ESC
aw 1ine02_RCA
aw 1ine02_SRC
aw 1ine05_TBE
aw 1ine05_ESC
aw 1ine0S_RCA
dw 1ine05_SRC
aw line04_TBE
dw line04_ESC
dw 1ine04_RCA
dw 1ine04_SRC
1ine07_entry label word
dw 1ine07_TBE
dw 1ine07_ESC
dw 1ine07_RCA
aw 1ine07_SRC
dw 1ine06_TBE
dw 1ine06_ESC
dw 1ine06_RCA
aw 1ine06_SRC

vector_tbl_end equ s
1ine07_count equ (($-1ine07_entry) /2)

CPCSTART.ASM

;Miscellaneous data

db ‘Comtrol HOSTESS 186 Sample Control Program' ,0
ab 'Copyright (C) 1991 Comtrol Corp. ',0
db 'All rights reserved.',0

release equ s
db ‘1,00 ',0

release_len equ s-release
aw 256 dup (2) sstack and heap
public tos

tos label word itop of stack
org 0££0h

msg_area db 16 dup (2) ;message area

public Comg, Sysq
;Comg - Queue for messages from System Processor to Communications Processor
Comg msgq_entry <>

;Sysq - Queue for messages from Communications Processor to Systems Processor
Sysq msgq_entry <
I

aw 4 dup (2) ;filler

;Line table, one entry for each line

public _line00,_line0l,_line02, line03, line04, line0S, line06, line07

_1ine00 line_entry <0004h, 0, 80h, 0cOh, 04h, 60h, bps9600, bps9600 shr 8,0,\
0,0,0,0ffset 1ine00_Txb,0,0,0ffset line00_Rxb,\
0,0,0,0>

_1ine0l line_entry <0000h, 0, 80h, 0cOh, 04h, 60h, bps9600,bps9600 shr 8,0,\
0,0,0,0ffset 1ine0l_Txb,0,0,0ffset line0l Rxb,\
0,0,0,0>

_line02 line_entry <0084h, 0, 90h, 0cOh, 04h, 60h, bps9600,bps9600 shr 8,0,\
0,0,0,0ffset 1ine02_Txb,0,0,0ffset line02 Rxb,\
0,0,0,0>

_line03 line_entry <0080h, 0, 90h, 0cOh, 04h, 60h, bps9600,bps9600 shr 8,0,\
0,0,0,0ffset 1ine03_Txb,0,0,0ffset line03_Rxb,\
0,0,0,0>

_line04 line_entry <0104h, 0, 0a0h, 0cOh, 04h, 60h, bps9600,bps9600 shr 8,0,\
0,0,0,0ffset line04_Txb,0,0,0ffset line04_Rxb,\
0,0,0,0>

_line05 line_entry <0100k, 0, 0aOh, 0cOh, 04h, 60h, bps9600,bps9600 shr 8,0,\
0.0.0.0ffset 1ine05 Txb.0.0.offset 1ine0S Rxb,\

CPCSTART.ASM

;Transmit buffers, one for each line

public 1line00_Txb,line0l_Txb,line02_Txb,1ine03_Txb,line04_Txb
public 1line05_Txb,line06_Txb,line07_Txb -
1ine00_Txb db Txb_size dup (2)

1ine01_Txb db Txb_size dup (?)
line02_Txb db Txb_size dup (2)
1ine03_Txb db Txb_size dup (?)
line04_Txb db Txb_size dup (?)
1ine05_Txb db Txb_size dup (?)
1ine06_Txb db Txb_size dup (?)
1ine07_Txb db Txb_size dup (?)

;Receive buffers, one for each line

public 1ine00_Rxb,line0l Rxb,1ine02_Rxb,1ine03_Rxb,line04_Rxb
) public 1line05_Rxb,line06_Rxb,1line07 Rxb -
1ine00_Rxb ab Rxb_size dup (2)

line0l_Rxb db Rxb_size dup (?)
line02_Rxb db Rxb_size dup (?)
1line03_Rxb db Rxb_size dup (?)
line04_Rxb db Rxb_size dup (?)
line0S_Rxb db Rxb_size dup (?)
line06_Rxb db Rxb_size dup (?)
line07_Rxb db Rxb_size dup (?)

end start

CP.EQU

iFile:

cp.equ
;Purpose:
;Company: Comtrol Corporation
jRelease:

2-18-92

;Date:

Equates for sample control programs for HOSTESS 186.

1.00, Craig Harrison - Original release.

;Interrupt Controller (PIC) Registers
equ 8000h

EOI_VAL
INT1_type equ
INTCTL equ
INTCTLL equ

TIMER_INT_CTRL equ

;Timer registers

TIMER1_CNT equ
TIMO_type equ
TIM1 type equ

TMR1_CTRL_reg equ
TMR1_MAX_CNTB equ
TMR1_MAX CNTA equ
TMR1_CNT_reg equ
TMRO_CTRL_reg equ

TMRO_CNT_reg equ
c2sint_reg equ
c2Sint_hi equ
c2sint_low equ
Txb_size equ
Txq_mask equ
Rxb_size equ
Rxq_mask equ
base_vector equ

jMessage Queue Equates

msg_len equ
msgq_size equ
msgq_mask equ
CP.EQU

0dh

0££22h
0££28h
0ff§2h
Of£ffh
08h

12h

0ffS5Seh
0££5ch
0££5ah
0££58h
0££56h
0££54h

0££52h
0f£50h

Oef60h
0

0008h

512
Txb_size-1

16

nsgq_size-1

xxx

jend of interrupt value
;system interrupt vector type

;PIC port

;PIC port for initialization command word
jtimer interrupt control register

:30/sec counter

imer 0 interrupt vector type
imer 1 interrupt vector type
mode/control register

max count B

max count A

count register

mode/control register

max count B

max count A

count register

;COM uP to SYS uP interrupt register
;jvalue to set interrupt line high
alue to set interrupt line low

;transmit buffer size

;receive buffer size

sbase interrupt vector type

;message length
;number of message queue entries

;Line Table data structure

line_entry struc
io_base aw
line_status aw

;8CC register values
WR2,

WR3_
WR4_
WR5_
WR1Z_
WR13_
WR15_

BEBBEEEEE

;Transmit queue data
Txq_head dw

Txq_tail dw
Txq_offset dw
;Receive queue data
Rxq_head dw
Rxq_tail dw
Rxq_offset dw
dw
dw
du
dw

line_entry ends
line_entry_len equ

O

o

R

iSCC base I/0 address
;line status (defined below)

;filler, keeps things on even boundaries

;filler
filler
sfiller
ifiller

size line_entry

;line_status definitions

line_active equ
Tx_active equ

0001h
0002h

;line is active
transmit is active (char is going out)

CP.EQU

;Message Queue definition

msgq_entry struc
msgq_head dw 2 ;queue head pointer
msgq_tail aw 2 squeue tail pointer
msgq_area db msgq_size*msg_len dup (2) ;queue buffers
msgq_entry ends

iSCC register equates

WRO equ 0

WR1 equ 1

WR2 equ 2

WR3 equ 3

WR4 equ 4

WRS equ 5

WR6 equ 6

WR7 equ 7

WR8 equ 8

WRY equ 9

WR10 equ 10

WR11 equ 11

WR12 equ 12

WR13 equ 13

WR14 equ 14

WR15 equ 15

RRO equ 0

RR1 equ 1

RR2 equ 2

RR3 equ 3

RR8 equ 8

RR10 equ 10

RR12 equ 12

RR13 equ 13

RR1S equ 15

; Baud Rate Generator Time Constants - x16 Baud Rate Factor
; (based on a 4.9152 MHz clock)

bps50 equ 3070

bps75 equ 2046

bps110 equ 1394 ; 0.026 percent error
bps134 equ 1140 ; 0.001 percent error
bps150 equ 1022

bps300 equ 510

bps600 equ 254

bps1200 equ 126

bps1800 equ 83 ; 0.401 percent error
bps2000 equ 5 ; 1.06 percent error
bps2400 equ 62

CP.EQU

;Write Register Definitions (for basic asynchronous communications)

jWrite Register 0 - command register

reset_ext equ 10n
reset_Tx_int equ 28h
error_reset equ 30n
reset_ius equ 38h

;Write Register 1 - Tx/Rx interrupt and data transfer mode definition
ext_int_enable equ 01h

Tx_int_enable equ 02h
parity_special equ 04h
Rx_int_enable equ 10n

iWrite Register 2 - interrupt vector

;Write Register 3 - Rx parameters and controls

Rx_enable equ
Rx5_bit_char equ 00h
Rx7_bit_char equ 40h
Rx6_bit_char equ 80h
Rx8_bit_char equ 0cOh

;Write Register 4 - Tx/Rx miscellaneous parameters and modes
parity_enable equ 01lh

parity_even equ 02h
parity_odd equ 00h
one_stop_bit equ 04n
one$_stop_bits equ 08h
two_stop_bits equ Och
x16_clock equ 40h
;Write Register 5 - Tx parameters and controls
RTS equ 02h
Tx_enable equ 08h
BREAK equ 10h
Tx5_bit_char equ 00h
Tx7_bit_char equ 20h
Tx6_bit_char equ 40h
Tx8_bit_char equ 60h
DTR equ 80h

;Write Register 6 - sync character or SDLC address field

CP.EQU

;Write Register 9 - master interrupt control
e

vis

NV equ 02h
DLC equ 04h
MIE equ 08h
status_lo equ 00h
status_hi equ 10h
reset_ch_B equ 40n
reset_ch_A equ 80h
hardware_reset equ 0coh

;Write Register 10 - miscellaneous Tx/Rx control bits

iWrite Register 11 - clock mode control

Tx_clk_eq BRG equ 10h

Rx_clk_eq BRG equ 40h

;Write Register 12 - lower byte of baud generator time constant

iWrite Register 13 - upper byte of baud generator time constant

;Write Register 14 - miscellaneous control bits
01h

BRG_enable equ
BRG_eq_sys_clk equ 02h

;Write Register 15 - external/status interrupt control
DCD_ie equ

CTs_ie equ 20h

break_ie equ 80h

;Read Register Definitions (for basic asynchronous communications)

;Read Register 0 - Tx/Rx buffer status and external status

Rx_buffer equ
Tx_buffer equ 04h

DCD_ equ 08h

cTs_ equ 20h

break_cond equ 80h

;Read Register 1 - special receive condition status
parity_error equ 10h

overrun_error equ 20h

framing_error equ 40n

;Read Register 2 - interrupt vector

DPLOADER.C

How DPLOADER Works

DPLOADER is a DOS program written in C. This program can:

* reset the Hostess 186 controller,

* remove header bytes before downloading,

¢ download a binary file into dual-port RAM on the Hostess 186, and
* start the Turbo Debugger debugger kernel code on the Hostess 186.

The diagram that follows show the data flow of DPLOADER.C.
DPLOADER.C Data Flow:

get_iobase

hex
dual-port
RAM digitf
reset controller o
base
address
invoke_tdrem
invoke = “Y”"
reset =
pes

filename
interrupt interrupt file # of bytes\ \

/* File:
Company:
Purpose:

Release:

*/

DPLOADER.C

dploader.c
Comtrol Corporation
Reset controller and start Turbo Debugger Remote if needed.
Load a binary file into the Smart HOSTESS dual port RAM and
signal the COM processor to begin execution. Strip off the
first ? bytes of the binary file before downloading, if needed.
1.00: February 4, 1988 - Craig Harrison - Original
1.01: June 23, 1991 - Craig Harrison
1. Add support for HOSTESS i control register initialization.
1.02: Aug 23, 1991 - Craig Harrison
1. Add reset option
2. Add Turbo Debugger Remote startup option
1.03: 12-3-91 - Craig Harrison
Changed all "outportb" to “outp" for compatability with
Microsoft C.
1.04: 1-2-92 - Scott Davidson
Changed program to work with Hostess 186 instead of Hostess i

#include <stdio.h>
#include <fcntl.h>

#include <do:

s.h>

#define EN_RAM 0x80 /* Enable DPRAM */

#define HiCR

0 0x01 /* Select Control Reg 0 */

#define HiCR1 0x02 /* Select Control Reg 1 */
#define DIS_RAM 0x00 /* Disable DPRAM */
#define HiCR2 0x04 /* Select Control Reg 2 */

#define HiCR!

char crlval;

/* HOSTESS 1
char winl6k
char win32k

3 0x08 /* Select Control Reg 3 */

/* HOSTESS 186 CR1 value */

86 CRO values for different window sizes */
0x07;
0x06;

char win6ék = 0x04;

/* HOSTESS 186 CR2 values for various offsets */

char wlék([8]
char w32k(4]
char w64k (2]

DPLOADER.C

void cr_init
unsigned far

= {0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07}; /* 16K windows */
= {0x00,0x02,0x04,0x06}; /* 32K windows */
= {0x00,0x04}; /* 64K windows */

(int io);
*get_dpbase () ;

int get_iobase();

void download(int io,unsigned far *flag p);
void reset_board(int io,unsigned far *£lag_p);
int invoke_tdrem(int io,unsigned far *flag_p);

main ()

{
int io_base; /* 1/0 ports base address */
unsigned far *dp_base; /* dual port base address */
dp_base = get_dpbase(); /* get dual port base address */
io_base = get_iobase(); /* get 1/0 base address */
reset_board (io_base,dp_base) ; /* reset board if needed */
download (io_base,dp_base); /* download & start ctrlpgm */
return(0);

}

Jrxknxn - N ey

/* Purpose: HOSTESS 186 control register initialization
/* Formal parms: None */
/* Parms modified: None */
/* Returns: Nothing */
void cr_init (int io)
{
outp(io+1,HiCRO | DIS_RAM); /* access CR0, PC mode */
outp (io,win64k) ; /* 64k window size */
outp (io+1,HiCR1 | DIS_RAM); /* access CR1 */
outp (io,crival) ; /* below 1 Meg RAM address */
outp(io+l,HiCR2 | DIS_RAM); /* access CR2 */
outp (io,wé4k([1]); /* 64K upper window */
outp(io+l,HiCR3 | DIS_RAM); /* access CR3 */

outp (io,c
outp (io+l

r4(0]); /* no IRQ set */
+EN_RAM) ; /* enable DPRAM */

*/

DPLOADER.C

/ P /
/* Purpose: Get dual port memory base address */
/* Formal parms: None */
/* Parms modified: None */
/* Returns: dp memory base address */

unsigned far *get_dpbase ()
{

int addrin, valid;

printf(“Enter most significant digit of dual port RAM address in hex:
do

(
valid = 1;
scanf ("%x", &addrin) ;
switch (addrin)
(
case 8:
crival = 0x08;
return((unsigned far *)0x80000000);
case 9:
crlval = 0x09;
return ((unsigned far *)0x90000000);
case OxA:
crival = 0x0A;
return((unsigned far *)0xA0000000);
case 0xB:
crival = 0x0B;
return((unsigned far *)0xB0000000);
case 0xC:
crlval = 0x0C;
return((unsigned far *)0xC0000000);
case 0xD:
crlval = 0x0D;
return((unsigned far *)0xD0000000);
case OxE:
crlval = 0x0E;
return((unsigned far *)0xE0000000);
case 0xF:
crlval = O0x0F;
return((unsigned far *)0xF0000000);

default:
printf ("Invalid, try again: ");
valid = 0;
break;

)

Jwhile (tvalid);

return((unsigned far *)0); /* This never hed, but it p mpiler
warning */

DPLOADER.C

/ F— * B LY
/* Purpose: Get I/O base address */
/* Formal parms: None */
/* Parms modified: None */
/* Returns: I/0 base address */

int get_iobase ()
{
int addrin;

addrin = 0;
printf ("Enter I/0 base address in hex: ");
while (addrin 0)

scanf ("$x", &addrin) ;
if ((addrin < 0x218) || (addrin > OxFFC))
(
printf ("Invalid I/0 address, try again:
addrin =

b

return addrin;

DPLOADER.C

Jrxnnn * KAKREEEE KR REKK KKK KKK AEKKKAEKE KKK XK EES [
/* Purpose: Reset board */
/* Entry: Nothing */
/* Exit: Nothing */

void reset_board(int io,unsigned far *flag_p)
(

char strbuff(81];

int i;

unsigned rec_flag;

printf(" Dual Port Base Address = %p\n", (char far *)flag_p);
printf (" I/0 Base Address = $XH\n",io):;
while (1)

{
printf ("Reset HOSTESS 186 controller (Y/N)? ");
scanf ("$s", strbuff);

switch (*strbuff) N
{

case 'y':

case 'Y':

outp (io+3,0) ;

delay (100) ;

outp (io+3, 0x£f);

printf (" Waiting for reset to complete\n");
delay (500) ;

cr_init (i0);

for(i = 0;i < 21;i++)

delay(1000);
if (*flag_p 0x55aa)
break;
}
if (((rec_flag = *flag_p) != Ox55aa) && i >= 21)
{
printf (" Reset failed, interaction flag = %XH\n",rec_flag);
exit(1);
return;
case 'n':
case 'N':
cr_init(io);
return;
default:
break;
b
}
}
DPLOADER.C
JERRAAEA KKK KEREE KKK RRRREE KX REEE KRR *x KxA A EAA R]
/* Purpose: Read a binary file into dual port memory, signal the COM */
IAd Processor to start execution, verify execution started. */
/* Entry: flag_p - Pointer to interaction flag */
/% io - I/0 base address */
/* Returns: Nothing */
/* Notes: The file to be downloaded must: */
/% Have “org 0" */
/* Have 80h bytes preceeding the code */
/* Write the value 55AAh to interaction flag when it starts execution */

void download(int io,unsigned far *flag_p)
(

char far *ram p;

char fname([13]; /* Name of file to download */
unsigned wait; /* Do nothing loop counter */
unsigned rec_flag; /* Received copy of interact flag*/
unsigned long strip; /* Number bytes to strip off file*/
char buffer(256]; /* Buffer for data to be xfered
to dual port RAM */

long int nbytes; /* Number of bytes downloaded */
int retry, /* Loop control flag */

i,

sector, /* File sector beign transfered */

f_h, /* File handle */

bytesread, /* Bytes read on current read */

tdrem_invoked; /* Set of TDREM is invoked */

/* Check interaction flag */
if ((rec_flag = *flag_p) 0x55aa)
{

printf(" Bad interaction flag = $XH before download\n",rec_flag);
exit(l);
}

/* Get file name and open file for read */
retry = 1;
while (retry)
(
printf (“Enter control program file name to download: ");
scanf (“%s12", £name) ;
if ((£_h = open(fname,O_BINARY)) == -1)
printf(" Unable to open file ¥s, try again.\n",fname);
else
retry = 0;
)

/* strip off first ? bytes from file */
printf ("Enter number of bytes to strip off file:

DPLOADER.C

/* Download file from disk to dual port RAM */

flag_p = OxAASS; / Write to interaction flag */
printf(" Downloading %s ... \n",fname);
nbytes = 0;

ram p = (char far *)flag_p + 0x80;
while((leof (f_h)) && (nbytes < OXFFEF))
{
bytesread = read(f_h,buffer,256); /* Read 256 bytes into buffer */
nbytes = nbytes + bytesread;
for(i ;i < bytesread;i++)

{

ram _p++ = buffer(i); / Move buffer into DPRAM */
}

}
if(close(f_h) '= 0)
{
printf (" Error closing file %s after reading into DPRAM\n", fname);
exit (1);

i

if (bytesread <= -1)

{ /* Error reading file */
printf(" Error reading file %s\a",fname);
exit (1);

}
else if (nbytes >= OXFEFFF)
(/* File to big */

printf (" File too large to fit in one segment\n");
exit (1);
)
else
{ /* Download successful, interrupt COM Processor if TDREM not invoked */
printf(" %1d bytes downloaded successfully\n",nbytes);
if (tdrem_invoked)
return;
outp(io + 2,0); /* Interrupt COM Processor */
printf(" COM processor interrupted to start control program\n");
for(wait = 0;wait < 10;wait++) /* wait for control program to */
/* restore interaction flag */
delay (400) ;
if(*flag_p == OxSS5aa)
break;
)
if ((wait >= 10) && ((rec_flag = *flag p) != 0x55aa))
{
printf(" Control program failed to start, interact flag = ¥XH\n",
rec_flag);
exit(1);
atea
DPLOADER.C
Jrrrrnx xx — /
/* Purpose: Invoke Turbo Debugger Remote kernel, if needed. */
/* Entry: flag_p - Pointer to interaction flag */
/* io - Board I/O base address */
/* Returns: 1 if tdrem is invoked, else 0 */
int invoke_tdrem(int io,unsigned far *flag_p)
{
char strbuff[0x81]; /* Stores string entered by user */
int do_tdrem,valid _answer,wait;
unsigned rec_flag; /* Received copy of interact flag*/

valid_answer = 0;
while{!valid_answer)
(
printf ("Invoke Turbo Debugger Remote Kernel on HOSTESS 186 controller (Y/N)? ")
scanf ("%s", strbuff) ;
switch (*strbuff)
(
case 'y':
case 'Y':
valid_answer = 1;
do_tdrem = 1;

case

case
valid_answer = 1;
do_tdrem = 0;
break;

default:
break;

}
}
if (do_tdrem)
{

(flag_p + 0x40) = 0x27cd; / Write int 27H instruction used to
invoke TDREM kernel */

flag_p = 0xaaS5; / set up interaction flag */
outp(io + 2,0); /* Interrupt COM Processor */
for(wait = 0;wait < 10;wait++) /* wait for execution to finish*/
{

delay (200) ;

if (*flag_p == 0x55aa)

break;

1
if ((wait >= 10) && ((rec_flag = *flag_p) != 0x55aa))
{

printf (" Turbo Debugger Remote Kernel failed to start, interact flag =
%XH\n", rec_flag);

HITERM.C

How HITERM Works

The HITERM program runs on the system and emulates a terminal. This DOS
program, linked with the HILIB.ASM file routines, works with the control program.
This diagram show the data flow for HITERM.C.

HITERM.C Data Flow:

serial line # interrupt

HITERM.C

Invoking HITERM
To use the executable file HITERM.EXE with CPC.EXE, follow these steps:
1. Setthe Hostess 186 for /O address 218h.

2. Check that no other device occupies the D000 base memory address.
The program uses 64K starting at D000:0.

3. Install the controller in the system.

4. Connect a non-intelligent ASCII terminal to the port on the Hostess 186 that you
want to use.
Set the terminal to:
* 9600 baud
8 data bits
* 1 stop bit
* no parity
* no flow control.

5. Start-up DOS.

6. Execute DPLOADER.EXE.

(c: dploader)

DPLOADER will prompt you for values it needs to download the control program.

Enter most significant digit of dual port RAM address in hex: d
Enter I/0 base address in hex: 218
Dual Port Base Address = D000:0000
I/0 Base Address = 218H
Reset HOSTESS 186 controller (Y/N}? y
Waiting for reset to complete
Enter control program file name to download: cpc.exe
Enter number of bytes to strip off file: 640
Invoke Turbo Debugger Remote Kernel on HOSTESS 186 controller {Y/N}? n
Downloading cpe.exe...
XHOX bytes downloaded successfully.
COM processor interrupted to start control program
Control program started execution

HITERM.C

e s

File: hiterm.c

Purpose: A sample terminal emulation program to demonstrate the use of
hilib.asm and cp.asm with the HOSTESS i and Hostess 186 controllers.

Company: Comtrol Corporation

Release: 1.00, Craig Harrison - Original release

Date: 8-23-91

Pr— /

#include <stdio.h>
#include <stdlib.h>
#include <dos.h>

/* Function prototypes */
int hiopen(int linenum);
int hiclose(int linenum);
int hiread(char *buffer,int cnt,int linenum);
int hiwrite(char *buffer,int cnt,int linenum);

main ()
{
int i;
int pnum;
int cnt;
char buf[80];
fprintf (stderr, "Serial Line Number (0-7): ");
gets (buf) ; /* get serial line */
sscanf (buf, "$d", épnum) ;
system("cls"); /* clear screen */
fprintf (stderr, "Serial Line Number %d\t\t\t\t\tHit F10 to Quit\n",
pnum) ;
if (!hiopen (pnum))
fprintf (stderr,"Can't open line %d\n",pnum);
exit (0)7
b
while (1) /* infinite loop */
{
/* attempt to read char from device and write to screen */
if ((cnt = hiread(buf,80,pnum)) > 0)
for (i=0;i<cnt;i+=2)
{
if (buf[i] == 015) /* CR = CRLF */
fprintf (stderr, "\n");
else if (buf[i] != 012) /* not LF */
HITERM.C

/* attempt to read char from keyboard and write to device */

if ((bdos(11,0,0)&0xEf) == OXFF) /* if char waiting */
{
buf(0] = bdos(8,0,0) & Oxff; /* read keybd char */
if ((buf[0] == NULL) && /* 2 char key */
((bdos (11,0,0) §0x££) == 0x££))
{
buf[1] = bdos(8,0,0) & Oxff; /* next */
if (buf (1] == 0x44) /* F10 = quit */
break;
else

hiwrite (buf,2,pnum);
}
else if (buf(0] == 015) /* CR = CRLF */

buf(1] = 012;
hiwrite (buf, 2, pnum) ;
}
else if (buf[0] != 012) /* not LF */
hiwrite (buf,1,pnum);
i
}
hiclose (pnum) ;
return(0);

HILIB.ASM
HILIB.ASM is the file that contains four Hostess 186 routines: hiopen(),
hiclose(), hiread(), and hiwrite(). Assemble and link the HILIB.ASM file with your

application program to access the Hostes i's serial lines. The paragraphs that follow
explain these routines, with examples in C syntax.

The hiopen routine opens a requested serial line on the Hostess 186, initializes the
line to 9600 baud, 8 data bits, 1 stop bit, and no parity:

int hiopen (linenum)
int linenum; /* number (0-7) of Hostess 186 line */

Returns 1 if successful, 0 if unsuccessful.
The function hiclose closes a requested serial line on the Hostess 186:

int hiclose (linenum)
int linenum; /* number (0-7) of Hostess 186 line */

Returns 1 if successful, 0 if unsuccessful.

The hiread routine reads up to a maximum “cnt” bytes into the line’s receive
buffer. The routine does not wait for the bytes to read:

int hiread (buffer,cnt, linenum)

char *buffer; /* local receive buffer */
int cnt; /* number of bytes to read */
int linenum; /* number (0-7) of Hostess 186 line */

Returns the number of bytes read (0 - 'cnt’).

The hiwrite routine writes up to a maximum “cnt” bytes from the line’s receive
buffer into dual-port memory . The routine does not wait for enough space to write
if the request is too large

hiwrite (buffer,cnt, linenum)

char *buffer; /* local transmit buffer */
int ent; /* number of bytes to write */
int linenum; /* number (0-7) of Hostess 186 line */

Returns the number of bytes written (0 - ‘ent’).

HILIB.ASM

SrEREREER
iFile: hilib.asm

jPurpose: A library of sample routines for the HOSTESS i and HOSTESS 186
: controllers.

Comtrol Corporation

1.00, Craig Harrison - Original release

8-23-91
o P— AR A AR AR

.xlist

include cp.equ

.list

JIf the sample program is to be run with the HOSTESS 186 installed at a different
;jaddress these two equates must be changed

DPRAM_ADDR equ 0d000h ;System address HOSTESS 186 dual port RAM
I0_ADDR equ 218h ;System I/0 base address of HOSTESS 186
.MODEL small
.DATA
hiopenmsg db 1,0,0c0h, 44k, 60k, 0eh,0,0,0,0,0,0,0,0,0,0
hiclosmsg db 2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
.CODE
;Function: int hiopen(linenum)
jParameters: int linenum; /* number of line to open (0-7) */
Return: 1 if successful, 0 if failed
;Purpose: Open a serial line on the HOSTESS 186
public _hiopen
_hiopen proc near
push bp ;prolog, establish stack frame
mov bp, sp
assume es:nothing
mov ax, DPRAM_ADDR
mov es, ax jes is dpram address
mov bx,offset Comq ;start of comm proc queue
mov ax,es: [bx].msgq_head ;ax = current msg number
inc ax sbump pointer
and ax, msgq_mask imask it
cmp ax,es: [bx] .msgq_tail ;is msg area full?
mov ax, 0 iset up return value for fail

jz _hiopen_10 Jif it's is full exit now

HILIB.ASM

mov ax,es: [bx].msgq_head :get head again
mov cx,msg_len ;length of a message
mul cl ;get message offset
lea di, [bx] .msgq_area ;get destination
add ai,ax jes:di = destination
mov si,offset hiopenmsg jds:si = source
mov ax, [bp+4] ;line number to open
mov [si*1],al ;2nd byte of msg is line number
rep movsb ;move the message
mov ax,es: [bx] .msgq_head ;get head again
inc ax increment it
and ax, msgq_mask smask it
mov . es: [bx] .msgq_head, ax ;store new head
mov dx, IO_ADDR+2 ;interrupt comm proc
out dx, al
mov ax,1 ;set up success return value
pop ds
pop di
pop si
bp sepilog
_hiopen endp
;Function: int hiclose (linenum)
;Parameters: int linenum; /* number of line to close (0-7) */
;Returns: 1 if successful, 0 if failed
;Purpose: Close a serial line on the HOSTESS 186
public _hiclose
_hiclose proc near
push bp ;prolog, establish stack frame
mov bp, sp
mov ax,DPRAM_ADDR
mov ;es = dpram address

s, ax
assume es:nothing

mov bx,offset Comq istart of comm proc queue
mov ax,es:[bx].msgq_head ;ax = current msg number

inc ax ;bump pointer

and ax,msgq_mask imask it

cmp ax,es:[bx].msgq tail ;is msg area full?

mov ax, 0 set up return value for fail
P Wirtaea 1n LiE trte e w11 avie mmw

HILIBASM
mov ax,es: [bx] .msgq_head ;get head again
mov cx,msg_len ;length of a message
mul cl ;get message offset
lea di, [bx]) .msgq_area iget destination
add di,ax ; i = destination
mov si,offset hiclosmsg 7 i source
mov ax, [bp+4] ;line number to close
mov [si+l],ax ;2nd byte of msg is line number
rep movsb ;move the message
mov ax, es: [bx] .msgq_head ;get head again
inc ax jincrement it
and ax, msgq_mask imask it
mov es: [bx] .msgq_head, ax istore new head
mov dx, I0_ADDR+2 ;interrupt comm proc
out dx,al
pop ds
pop ai
pop si
mov ax, 1 ;set up sucess return value
_hiclose_10:
pop bp sepilog

ret
_hiclose endp

;Function: int hiread(buffer,cnt,linenum)

;Parameters: char *buffer; /* points to storage buffer */
; int cnt; /* maximum count to read */
; int linenum; /* number (0-7) of serial line */
eturns: Integer number of bytes read
;Purpose: Read bytes from an open serial line on the HOSTESS 186
public _hiread
_hiread proc near
push bp ;prolog, establish stack frame
mov bp, sp
sub sp,2
push si ;save registers
push di
push ds
mov ax, (bp+8] ;ax = line number
call higet_line isi = line table
mov di,si ;di = line table

mov (bp-2],si ;also save it

Jmp
_hiread 10:

ax, [bp+6]
: [si].Rxq_head
di].Rxq_tail

_hiread_10
himin

ax, cx

_hiread_30

si,ds:[di].Rxq_offset
si, bx
di, [bp+4]

short _hiread_20

;ax = count

;get head

iget tail

jcx = head - tail

Jif cx < 0 jump

jget min of cx and ax
;store min in

jexit if min = 0 (i.e.
isi = receive buffer
;si = current loc in bu:
;di = local buffer
iread bytes into buffer
; jump

HILIB.ASM

empty)

ffer

add cx, Rxq_mask ;adjust cx
inc cx
call himin 7now get min of cx and ax again
mov dx, cx istore min
jexz _hiread_30 jexit if min = 0
mov ax, Rxq_mask jax = mask
sub ax, bx jax = mask - tail
inc ax buffsize - tail
mov cx,ax count I can read here
mov si,ds:[di].Rxq_offset receive buffer
add si, bx current loc in buffer
mov di, [bp+4] local buffer
rep movsb ;read bytes into buffer
mov cx, dx jex = full min count
sub cx, ax ;subtract what we just read
jexz _hiread 20 jexit if
mov bx, [bp-2] jrestore start of line table
mov si,ds: (bx].Rxq offset ;restore start of buffer
rep movsb ;jread rest into local buffer
_hiread_20:
mov di, [bp-2] line table
mov bx,ds: [di) . Rxq_offset % = receive buffer
sub si,bx jget new tail
and si,Rxq_mask jmask it
mov ds:(di] .Rxq_tail,si jstore it
_hiread_30:
mov ax, dx jreturn value = number of bytes read
pop ds sepilog
pop ai
HILIB.ASM
jFunction: int hiwrite(buffer,cnt,linenum)
;Parameters: char *buffer; /* points to buffer to write */
; int cnt; /* number of bytes to write */
; int linenum; /* number (0-7) of serial line */
7Returns: Integer number of bytes written
7Purpose: Write bytes to an open serial line on the HOSTESS 186
public _hiwrite
_hiwrite proc near
push bp ;prolog, establish stack frame
mov bp, sp
sub sp, 2
push si ;save registers
push di
push es
mov ax, DPRAM_ADDR ;set up dual line memory seg
mov es,a
assume es:nothing
mov ax, (bp+8) ;get line number
call higet_line ;si = line table
mov [bp-27, si ;save the pointer
mov cx,es:[si].Txq_tail et tail
mov bx,es: [si].Txq_head iget head
sub cx, bx jget difference
jbe _hiwrite_10 ;branch if tail <= head
mov ax, [bp+6] ;ax = count
dec cx jadjust tail - head
call himin ;return minimum of ax and cx
mov dx, cx ;save minimum in
jexz _hiwrite_30 jexit if min = 0 (i.e. full)
mov di,es:(si].Txq offset et offset of buffer
add di, bx et starting loc in buffer
mov si, (bp+d) i = start of write buffer
rep movsb jwrite buffer to dpm
jmp short _hiwrite_20 7done
_hiwrite_10:
mov ax, [bp+6] ;ax = count
add cx, Txq_mask ;adjust tail - head
call himin
mov dx, cx store minimum in dx
jexz _hiwrite_30 jexit if min = 0

HILIB.ASM

mov cx,dx icx = count

sub CX,ax ;subtract what we just wrote

jexz _hiwrite_20 jexit if done

mov bx, [bp-2] ;get line table pointer

mov di,es: [bx].Txq_offset ;reset buffer pointer to start
movsb jurite rest of buffer

mov si, [bp-2] ;s line table
N mov bx,es: [si].Txq_offset iget offset of buffer
sub di, bx ;get new head pointer
and di, Txq_mask imask it
mov es:(si].Txq_head,di ;store new head
_hiwrite_30:
mov ax, dx jreturn value = bytes written
pop es
pop di jepilog
pop si
mov sp,bp
pop bp
ret

_hiwrite endp

higet_line proc

mov cl,line_entry_len jcl = length of a line table
mul cl jmult linenum by length

add ax,offset line00 ;add start of line tables
mov si,ax jreturn in si

t
higet_line endp

himin proc
cmp ax, cx ;compare the two values
jne himin_10 ; branch if ax >= cx
mov cx,ax jmake cx = ax
Jmp short himin_99

himin_10:
mov ax, cx jmake ax = cx

himin_99:
ret

himin endp

HILIB.ASM

iThis segment forms a template for dual port RAM so that offsets can be
icomputed. It does not actually reserve any memory.

DPRAM segment para AT 0
org Oh
;The first 80h bytes are defined by the firmware
public interact_flag

interact_flag dw B ;processor interaction flag
boot_flag dw ? iboot/activity flag
c£g_map dw 2 ;configuration map
fw_release db 8 dup (2) ;firmware release number
sw_release db 8 dup (2) scontrol program release number
dad ? ;reserved
dram_map ad 2 ;DRAM map
scc_map ad 2 ;SCC map
board_id dd 2 sboard ID
ii_flag db 2 . ;invalid interrupt flag
ii_type db 2 ;invalid interrupt type
_ent aw 2 sinvalid interrupt count
db 128-42 dup (?) ;balance of firmware area
org 1000h
iComq - Queue for messages from System P to Communications P
Comg msgq_entry <>
;Sysq - Queue for messages from Communications Processor to Systems Processor
Sysq msgq_entry <>
dw 4 dup (?) ifiller

iLine table, one entry for each line

1ine00 line_entry <
line0l line_entry <>
1ine02 line_entry <>
1ine03 line_entry <
1ine04 line_entry <>
1ine05 line_entry <>
1ine06 line entry <>
1ine07 line_entry <>

;Transmit buffers, one for each line

1ine00_Txb db Txb_size dup (?)
1ine01_Txb db Txb_size dup (2)
line02 Txh An Tyh eiza Aun (2

HILIB.ASM

iReceive buffers, one for each line

1ine00_Rxb db Rxb_size dup (2)
1ine01_Rxb db Rxb_size dup (?)
1ine02_Rxb db Rxb_size dup (?)
1ine03 Rxb db Rxb_size dup (?)
1ine04_Rxb db Rxb_size dup (?)
1ine05_Rxb db Rxb_size dup (?)
1ine06_Rxb db Rxb_size dup (?)
line07_Rxb ab Rxb_size dup (?)
DPRAM ends
end
TSAMPLE.MK
#CC = tcc # for Turbo Ct+
cc = bee # for Borland C++
#CPCLIB = \tc\lib\cs.lib # for Turbo C++
CPCLIB = c:\borlandc\lib\cs.lib # for Borland Ct++

nothing: hiterm.exe dploader.exe cpa.com cpc.exe

dploader.exe: dploader.c tsample.mk
$(CC) -mc -v dploader.c

hiterm.exe: hiterm.c hilib.asm tsample.mk
$(CC) -ms -v hiterm.c hilib.asm

#CPA (built with symbol table for debugging with Turbo Debug)
cpa.com: cpa.asm cp.equ tsample.mk
tasm /1 /s /zi cpa.asm, cpa.obj
tlink /m /s /v cpa.obj, cpa.exe, cpa.map
tdstrip -s -c cpa.exe cpa.tds

#CPC (built with symbol table for debugging with Turbo Debug)
cpc.exe: cpc.obj cpcstart.obj tsample.mk
tlink /m /s /v cpcstart.obj cpc.obj, cpc.exe, cpc.map, $(CPCLIB)
tdstrip -s cpc.exe

cpc.obj: cpe.c tsample.mk
$(CC) -c -mt -G -v -ocpc.obj cpe.c

cpestart.obj: cpestart.asm cp.equ tsample.mk
tasm /1 /s /zi cpcstart.asm, cpestart.obj

CHAPTER 3 - Preview: Initializing the Controller, the Control
Registers, and Memory

To start up the controller, you must first reset and initialize the controller, initialize
the control registers, and finally enable the memory on the controller. The chapters
that follow explain in detail how these actions occur. All of these actions occur by
writing to the VO base address plus an offset:

1/O Address: Description:

I/0 base+0 writes to control registers

I/0 base+l switches memory ON or OFF,
control register index

I/0 base+2 _interrupts controlier

1/0 base+3 resets controller

After the system boots, the Hostess 186's firmware code executes and initializes the
controller’s registers and data structures to a preliminary state.

Controller State at Startup

When the Hostess 186’s firmware code executes, and it sets the controller to the
following state:

¢ the control registers are set to the following values:

Control Default
Register: Setting:
1 8 bit memory transfer, 128K window,
below 1 MB base address.
2 0 base memory address
3 Zero offset into dual-port memory
4 IRQ disabled

* the timer interrupts are not enabled.

* the 80186’s timer 2 and DMA channel 1 are reserved for controller memory refresh.
(Timer 2 can be used as a clock input for timer 0 and timer 1. DMA channel 1

Preview

¢ the following interrupt vectors are initialized:

Hostess 186 Vector ~ Vector
Interrupt: type table
number: location:
NMI h h
DEBUGGER Oh Oh
RAM QUERY 1h 4h
DEBUG_PORT 2h 8h
CONFIG QUERY 3h Ch
TURBO_DEBUGGER REMOTE 7h Ch
8530 bank 1 Ch
SYSTEM 0Dh 34h
IRQ7 (invalid interrupts) 37h DCh
SCC base 80h 200h

" Operates in cascade mode and therefore does not use
this vector table entry.

¢ the firmware user area is initialized in dual-port memory.

From this preliminary state, the Hostess 186 is ready to be reset by the control
program.

Resetting and Initializing the Controller

Writing to the address 1/0_base+3 resets the controller. Write the value 00h, delay
one-tenth of a second, then write the value OFFh. The controller's memory will come
up as disabled after the controller is reset. Writes to the system or reads to dual-
port RAM are not allowed between these two I/O writes. (For UNIX device drivers, you
can protect these two VO writes using an spl 7 () kernel call.)

An example of these two /O writes is:

outp (I/0_base+3, 00h);
delay (HzZ/10);
outp (I/0_base+3, OFFh) Resets the Hostess 186 controller

Preview

Initializing Control Registers

The control registers are written through a two-step process:
¢ an index value is written out to 1/0_base+1 to select the control register:

Control Index with
Register: RAM
disabled:
01h

02h

04h

08h

Al w|rof =

 the register contents are written out to 1/0_base+0. The index will remain fixed
until an 1/0_base+1 is written again. Subsequent writes to the same control
register are permitted without intervening index writes (this is useful for
applications that use a sliding window into dual-port RAM).

Initialize all control registers before enabling the controller's memory. This means
that the data bit SD7 must bet set to a 0 whenever you write out to 1/0_base+1.
(See the table column titled “Index with RAM disabled.”)

For example:

outp (I/0_base+l, 01h); Setup for Control Register #1
outp (I/0_base+0, <value>)

outp (I/0_base+l, 02h); Setup for Control Register #2
outp (I/0_base+0, <value>)

outp (I/0_base+l, 04h); Setup for Control Register #3

outp (I/0_baset+0, <value>)

outp (I/0_base+l, 08h); Setup for Control Register #4
outp (I/0_baset0, <value>)

After initializing the control regi. , enable memory by executing the following:
outp (I/0_base+l, 80h)

Once the control registers are initialized, you access the registers with new
addresses.

Preview

CHAPTER 4 - Control Registers Used on the Hostess 186

Register Features

There are four control registers on the Hostess 186. These write-only registers
control the memory addressing, and select the memory window size, interrupts, and
mode of operation (either PC (8-bit) or AT (16-bit)). You access the control registers
by writing an index value to the I/0 base + 1 address, then the register contents
tothe I/0 base + 0 address. (The chapter titled “Input/Output Addresses” has a
section that explains writing to the /0 base + offset address.) The three-
position DIP switch SW1 selects the /O base address.

Overall, the registers function in this manner:

* Control register #1 selects the “sliding window” size, the AT/PC data transfer
mode, and part of the controller’s system address.

Control register #2 selects the remainder of the controller’s system address.
Control register #3 selects the “sliding window” of dual-port memory.
Control register #4 selects the interrupt request (IRQ).

Control Register #1

This write-only register selects the:

* mode of memory transfer between the controller and the system.
* windowing capability for the controller.

¢ size of the controller’s “sliding window.”

Writing a value to data bits SD0 to SD2 sets the size of dual-port memory’s sliding
window. This “window” is the portion of the dual-port memory the system processor
sees at any one time. Writing a value to data bit SD4 determines if the Hostess 186
uses a sliding window. Writing a value to data bit SD5 determines the mode of data
transfer between the controller and the system. Finally, writing a value to data bits
sDé and SD7 specifies part of the controller’s system address. (You set the Hostess
186’s system address with data bits SD6 and SD7 of control register #1, and data bits
SDo through SD7 of control register #2.)

SD6 SD5 SD4 SD3 _SD2 SD1 SDO
Field: SA15 SA14 AT/PC Window not 64K 32K 16K
mode _enable used

Figure 8. Control register #1 format.

Control Registers

memory space. All boards within a 128K block that begins on a 128K boundary must
use the same mode of operation.

Data bits SDO to SD2 selects the size of dual-port memory’s sliding window.

Table 5. Control register #1 sliding window size format.
Control Register #3

Data SD2 SD1 SDO Window
Bits: _ 2 Size:

I 4 1S 1=

Setting the sliding window size determines how much of the dual-port RAM the
system may access at one time. A 16K window allows four Hostess 186 controllers to
be configured under one megabyte.

How the system sees the Hostess 186’s memory, using slidingwindows.
(A 16K window allows four Hostess 186 to be under one meg:)

10000

ROM

E0000 BIOS 4
Hostess 186 #4,
nos(ess :gg ::
1
D000 _|Hostess 188 #

Video
A0000 buffers

1024
Kbyte:

System
RAM

Control Registers

This example selects the below one megabyte base address D000 : Oh, using the VO
base 218h, with a 64K window:

outp (21%h,01h); /* access CR#1l, */
outp (218h,04h); /* set 64K upper window ,
PC mode */
outp (219h,02h); /* access CR#2 */
outp (218h,0Dh); /* below 1 Meg RAM address */
outp (219h,04h); /* access CR#3 */
outp (218h,04h); /* set 64K offset */
outp (219h,80h); /* enable DPRAM */
Control Registers

Control Register #2

This write-only register selects the system memory address for the controller.
Registers #1, #2, and #3 together manage the Hostess 186’s addressing.

For example, if you address the Hostess 186 controller below one megabyte and use
a sliding window; you must set the AT/PC mode bit, the WINDOW ENABLE bit, and
sliding window size bits in control register #1, set the system address bits in control
register #1 and #2, and the sliding window offset bits in control register #3

Control register # 1’s data bits SD6 and SD7, combined with control register #2's data
bits SD0 to SD7 set the system address for the Hostess 186 controller:

SA23 SA22 "SA21 SA20 SA19 SA18 SA17 SA16
Figure 10. Control register #2 format.

The range of base addresses possible is from 80000h to FE0000h. Table 6 lists the
popular system addresses under sixteen megabytes, whereas Table 7 lists the
popular system addresses under one megabyte.

Table 6. Memory locations addressed under sixteen megabytes.
26 9. emory Jocalions acoressec unc

Address: Value for Value for Address: Value for Value for
Control Control Control Control
Register #2, | Register #1, Register #2, | Register #1,
Data bits Data bits Data bits Data bits
SD7to SDO: | SD7 to SD6: SD7 to SDO: | SD7 to SD6:
F00000h OFQh Oh F80000h OF8h Oh
F20000h OF2h Oh FA0000h OFAh Oh
F40000h OF4h 30h FC0000h OFCh 30h
F60000h 0F6h 30h FE000QOh OFEh Oh
E00000h QEQOh Oh E80000h OE8h 30h
E20000h 0E2h Oh EAQ0000h OEAh Oh
E40000h 0E4h Oh EC0000h OECh Oh
E60000h OE6h Oh EE0000h OEEh 0.
D00000h 0DOh 30h D80000h 0D8h 30h
D20000h 0D2h 30h DA000Oh ODAh 30h
D40000h 0D4h 30h DC0000h 0DCh 30h
PAONNNR OnAh 30h PRON00K OnFh 30h

Control Registers

This table defines the popular memory base locations for Hostess 186 controllers
addressed under one megabyte:

Table 7. Memory locations addressed under one megabyte.

Controller Value for Value for Valid System
Memory Control Control Window Sizes
Address and Register#2 Register#1 (set with Control
Offset Bits0to 7 Bits 6 and 7 Register #1)
SD7 to SD0) (SD7 to SD§)
000:0000 08h 00h 16K, 32K, 64K
000:4000 08h 01h 16K
000:8000 08h 02h 16K, 32K
000:€000 08h 03h 16K
000:0000 0%h 00h 16K, 32K, 84K
000:4000 0%h 01h 16K
000:8000 0 02h 16K, 32K
000:C000 0%h 03h 16K
A000:0000 0Ah 00h 16K, 32K, 84K
A000:4000 0Ah 0lh 16K
A000:8000 0Ah 02h 16K, 32K
A000:C000 0Ah 03h 16K
B000:0000 0Bh 00h 16K, 32K, 684K
B000:4000 0Bh 0lh 16K
B000:8000 0Bh 02h 16K, 32K
B000:C000 0Bh 03h 16K
C000:0000 0Ch 00h 6K, 32K, 64K
€000:4000 0Ch 0lh 6K
€000:8000 0Ch 02h 6K, 32K
€000:C000 0Ch 03h 6K
D000:0000 0Dh 00h 16K, 32K, 64K
D000:4000 0Dh 0lh 16K
D000:8000 0Dh 02h 16K, 32K
D000:C000 0Dh 03h 16K
E000:0000 OEh 00h 16K, 32K, 64K
£000:4000 0Eh 01h 16K
=ANN-RONN nwh noh 16K 32K
Control Registers

The following example selects the above one megabyte base address FA0000h, using
the 1O base 218h:

outp (219h,01h); /* access CR#1 */

outp (218h,30h); /* set address, AT mode */
outp (219h,02h); /* access CR#2 *

outp (218h,FAh); /* zero out */

outp (219h,04h); /* access CR#3 */

outp (218h,00h); /* zero out */

outp (219h,80h); /* enable DPRAM */

Control Registers

Control Register #3

This write-only register selects and controls the dual-port memory window offset.
Remember, this “window” is the portion of the dual-port memory the system
processor sees at any one time.

Data

LD7 LD6 LD5 LD4 LD3 LD2 LDt LDO
Fi notused notused notused notused motused WA16 WA15 WAI14
Figure 11. Control register #3 format.

The fields WA14, WA15, and WA16 control the window’s offset from the beginning of
the 128K block of dual-port memory.

Table 8. Control register #3 window offset format.

Control

Register #3 16K Window 32K Window 64K Window

Bits 0to 2 Data LD2 LD1 LDO Offset: Offset: ffset:

[(LDOtoLD2) Bits 2 1 0
00h 0 0 0 + 0 + 0 + 0
0lh 0 0 1 + 16K + 0 + 0
02h 0 1 0 + 32K + K + 0
03h 1 1 + 48K + K +
04h 0 0 + 64K + K + 64K
05h 0 1 + 80K+ 64K+ 64K
06h 1 0 + 96K + 96K + 64K
07h 1 1 1 + 112K+ 96K + 64K

This example selects the below one megabyte base address D000 : Oh, using the VO
base 218h, and sets a 64K sliding window with a 64K offset:

outp (219h,01h); /* access CR#l, */

outp (218h,04h); /* PC mode, 64K window */
outp (219h,02h); /* access CR¥2 */

outp (218h,0Dh); /* below 1 Meg RAM address */
outp (219h,04h); /* access CR#3 */

outp (218h,04h); /* set 64K offset */

outp (219h,80h); enable DPRAM */

Control Registers

Control Register #4

This write-only register selects the IRQ used to interrupt the system. Open-collector
outputs allow more than one Hostess 186 controller to share the same IRQ. (The
open-collector output is a feature not used by COMTROL’s device drivers.)

The corresponding value for each IRQ appears in the next table.
Table 9. Control register #4 interrupt values.

Interrupt: Value for
Control
Register #4:
IRQ3 08h
IRQ4 0%h
IRQ5 0Ah
1RQ9 0Bh
IRQ10 0Ch
IRQ11 0Dh
1RQ12 OEh
IRQ15 OFh
Disabled 00h

This example selects the below one megabyte base address D000 : Oh, using the VO
base 218h, with a 64K window and a 64K offset, and selects IRQ11:

outp (219h,01h); /* access CR#1l, */

outp (218h,04h); /* PC mode, 64K window */
outp (219h,02h); /* access CR¥2 */

outp (218h,0Dh); /* below 1 Meg RAM address */
outp (219h,04h); /* access CR#3 */

outp (218h,04h); /* set 64K offset */

outp (219h,08h); /* access CR#d */

outp (218h,0Dh); /* set IRQ11 */

outp (219h,80h); /* enable DPRAM */

CHAPTER 5 - Input/Output Addresses

Setting the I/O Addresses

The three-position DIP switch block on the controller sets the system I/O addresses.
The ller reserves four ive /O addresses, starting with the address set
by the switches. Table 10 shows the possible IO addresses and their switch settings.

Table 10. Hostess 186 /O addresses.

Dip Switch o] Dip Switch
Address Settings Address Settings
Range: 1 2 3 Range' 1 2 3

218h - 21Bh OTN

21Ch - 21Fh ON

318h - 31Bh

1

31Ch - 31Fh

238h - 23Bh ON 338h - 33Bh

23Ch - 23Fh 33Ch - 33Fh

1/0 Addresses

Writing to VO_Base + Offset

The Hostess 186 controller reserves four consecutive system VO addresses:
1/0_base+0, I/0_base+l, I/0_base+2, and I/0_base+3.

Table 11. Hostess 186 /O map.

1/O Address: Description:

1/0 base+0 _ writes to control registers

I/0 base+l switches memory ON or OFF,
control register index

1/0 base+2 _interrupts controller

I/0 base+3 resets controller

Use 1/0_base+1 to switch the memory either ON or OFF, and as an index register
when writing to the control register. A write of value 1 to bit 7 switches the memory
ON. A write of value 0 to bit 7 switches the memory OFF. This example shows how to
turn on the memory at the I/O base address 218h:

outp (0x219,80h);

The next example shows how to use 1/0_base+1 as an index register. This example
first selects control register #4 at VO base address 218h, and then selects IRQ 3:

out (0x219, 08h) ; Access Control Register #4, keep memory disabled
out (0x218, 08h) ;Set IRQ 3

Any access to the control registers after the controller is initialized have the
following addresses.

Table 12. Index with RAM enabled or disabled.
Control Index with Index with
Register: RAM RAM
enabled: disabled:
1 81h 01h
2 82h 02h
3 84h 04h
4 88h 08h

Use 1/0_base+2 to interrupt the controller. Writing any byte value generates an
interrupt to the controller. It is the controller's responsibility to clear this mterrupt

Thic avamnla ahawre hawr #a intammint n anmbuallas chana 1A hans adduans in

1/0 Addresses

writes using an spl 7 () kernel call.) This example shows how to reset a controller
whose V0 base address is 218h:

outp (0x21b,0x00); /* set the reset */
delay(HZ/10); /* delay 1/10 second */
outp (0x21b,0xf); /* remove the reset */

After removing the reset, you must wait between approximately five seconds (for the
128 Kbytes of memory) to allow the reset diagnostics to complete.

