eCos Reference Manual

eCos Reference Manual
Copyright © 1998, 1999, 2000, 2001, 2002, 2003 by Red Hat, Inc.Nick Garnett (eCosCentric)Jonathan Larmour
(eCosCentric)Andrew Lunn (Ascom)Gary Thomas (MLB Associates)Bart Veer (eCosCentric)

Documentation licensing terms

This material may be distributed only subject to the terms and conditions set forth in the Open Publication License, v1.0 or later (the latest version is
presently available at http://www.opencontent.org/openpub/).

Distribution of substantively modified versions of this document is prohibited without the explicit permission of the copyright holder.

Distribution of the work or derivative of the work in any standard (paper) book form is prohibited unless prior permission is obtained from the copyright
holder.

Trademarks

Red Hat, the Red Hat Shadow Man logo®, eCos™, RedBoot™, GNUPro®, and Insight™ are trademarks of Red Hat, Inc.
Sun Microsystems® and Solaris® are registered trademarks of Sun Microsystems, Inc.

SPARC® is a registered trademark of SPARC International, Inc., and is used under license by Sun Microsystems, Inc.
Intel® is a registered trademark of Intel Corporation.

Motorola™ is a trademark of Motorola, Inc.

ARM® is a registered trademark of Advanced RISC Machines, Ltd.

MIPS™ is a trademark of MIPS Technologies, Inc.

Toshiba® is a registered trademark of the Toshiba Corporation.

NEC® is a registered trademark if the NEC Corporation.

Cirrus Logic® is a registered trademark of Cirrus Logic, Inc.

Compag® is a registered trademark of the Compag Computer Corporation.

Matsushita™ is a trademark of the Matsushita Electric Corporation.

Samsung® and CalmRISC™ are trademarks or registered trademarks of Samsung, Inc.

Linux® is a registered trademark of Linus Torvalds.

UNIX® is a registered trademark of The Open Group.

Microsoft®, Windows®, and Windows NT® are registered trademarks of Microsoft Corporation, Inc.

All other brand and product names, trademarks, and copyrights are the property of their respective owners.

Warranty

eCos and RedBoot are open source software, covered by a modified version of the GNU General Public Licence (http://www.gnu.org/copyleft/gpl.html), and
you are welcome to change it and/or distribute copies of it under certain conditions. See http://sources.redhat.com/ecos/license-overview.html for more
information about the license.

eCos and RedBoot software have NO WARRANTY.

Because this software is licensed free of charge, there are no warranties for it, to the extent permitted by applicable law. Except when otherwise stated in
writing, the copyright holders and/or other parties provide the software “as is” without warranty of any kind, either expressed or implied, including, but not
limited to, the implied warranties of merchantability and fitness for a particular purpose. The entire risk as to the quality and performance of the software is
with you. Should the software prove defective, you assume the cost of all necessary servicing, repair or correction.

In no event, unless required by applicable law or agreed to in writing, will any copyright holder, or any other party who may modify and/or redistribute the
program as permitted above, be liable to you for damages, including any general, special, incidental or consequential damages arising out of the use or
inability to use the program (including but not limited to loss of data or data being rendered inaccurate or losses sustained by you or third parties or a failure
of the program to operate with any other programs), even if such holder or other party has been advised of the possibility of such damages.

Table of Contents

I THE BCOS KEBIMEL.. oottt ettt ettt s e e st e et et e ebe e b e ebeeaeesbesasesbesbeeaseebeeseeseesaeenbesbeessanbesanennes XXV
KEIMEI OVEIVIEW.......ccviceeiitieeectesteete ettt e ete st etestesaaesbesbeesteebeeaeesaesaeebesbaessaabesasessesaeentesbeessastesssensesseensesrennnens 27
5]V 18] o] o Lo OO U SR TP PP TPTPRR 35
BN 1 C=T= 10 Ko (Y= 1o T« 39
I A1 C=T= 0o T a Y014 g =1 (0] o 43
BN 1 C=T= o o701 {0 47
L C=T= 00 (=T ¢ 1T T= 1o o T 49
LLALCEE Lo I o g o111 T=E OSSOSO TP PRSP 51
(g g (T =Y= T I = - TR 53
B 1 €=T= (o o [T 1 U Tod (] TR 55
EXCEPLION NANGING....ctittieetereete et b e e b e e b et b et b et bbbt neebene b e 57
(OF0 10191 (=1 = TSSOSO STRROTRRN 59
(O [0 To1 TSROSO 61
Y F= U 41RO 63
IVIULEXES ...ttt et e ettt e e ettt e e bt e e e teeesabeeeeateeeeaseeesaseeeasseesseeeabeeaaseeesaseeesabeaeanseseanseesasseesnsessnnnns 65
CONAILION VATADIESeiiii ettt ettt st et e et e s tee e te e bt e sbeesabesbeesbeesasesaseesbeesasessseenbeesseessnesarens 71
Y=t a T o] gL (=SOSR 75
MBI DOXES ...ttt ettt et e e te e e be e st e ebe e beeshbeeaseeabeesbeeeaseeabeesbeeeaeesaseenbeeaseesaseenbeenseenseeans 77
LY 1= 1 = Vo TSRS 79
1 oo & S 83
STl a=To [0 1T @] o) 1 {01 H OSSR OPRRTRRP 85
LT 0T o1 F= T o | 1o O 87
Kernel Real-time CharaCteriZatiOn..........cccuiicieeceeiee ettt sree s ee s e e s beesaeesate e beesaeesanesbeenseesseeans 93

I1. REABOOI™ USEI'S GUILE......cccviireeeeeiteeeeeteeteeete et este st eaesbesteeteebeestesaesseesbesbeesbesbessssasesasessesbeensestesssensesasessessnen ciii
1. Getting Started With REABOOL..........cccoviiieeeecise ettt se e s sae st e ae e e e esenreneenes 1

More information about RedBOO0t 0N the WED..........c.cciiiieeiececeeeee e 1
LTRSS 1T T =T |20 OSSP 1
USEE INEEITACE. ... it ettt ettt et sttt et et e st e et e sbesae e besbeease b e sbeesbesbeensesbeeasenbesbeensesbesneesresnean 2
[2¥=To| 2o To 8l <o 11TaTe [@Zo] 010 aF= 1o o KU SRR 2
REABOOt STAMUP IMOTE......eeiitiiieieee ettt ettt enas 3
REABOOt RESOUICE USBOEL.......ciiiiiieirieierieie etttk ettt b e e e ntens 4
[Fo T T ST Y0 10 o YT 4
RAM RESOUICES....ciiiiettteee e citeee e e e ettt e e e e ete e e e e s taeeeeesateeeesesasseeeeeaaraeessassbeesesaassseeeeesasteneeaesnnres 5
Configuring the RedBo0t ENVIFONMENL.........ccoiiiiiirieirieree et 5
Target Network CoNfIQUIALIONL........ccooiiriiiiieee et eb e 5

HOSt NEetWOrk CONFIGUIALION........iiieeeirieeirietere ettt 6
Enable TFTP on Red Hat LINUX B.2.......covi ittt s ere b e sneenee e 7

Enable TFTP on Red Hat LiNUX 7 (OF NEWEL)......cceiiririeirieesieesie e 7

Enable BOOTP/DHCP server on Red Hat LINUX.......ccoceeveiieeeeenee e ecreeeree e 7

Enable DNS server on Red Hat LINUX........ccveeeeiiiiieeceecee ettt eaee e 8

RedBOOt NEIWOIK QAEWAY........coiruirieieieeerterie ettt sb e e s sre e 9

YL 1 [o7= 1[0 o NSO 10

2. RedBoot Commands and EXAMPIES.........cccciiiiiiiiiirre et e 11
([T oY [¥{ox 1 o] o SO PR 11
COmMMON COMIMANAS.cviiiteeitieeee ettt e eeeeireesteesteesaeeebeesseesaeesabeesseessessabesseebessasesnsesseesaessnsennseesses 13

oTo 10 [0 | =1 = SRS 15
o= (o 1SR 17

(o3 0= T] = SRS 19

Lo U TSRS 21

[0 L] USSR 23

Lo (W01 o TSRS 25

L] | o SRS 27

T o=V [0 (=2 USSR 29

o= T SRS 31

[0 010] 0 0 o OSSP P VPP UPPPURUPRUROIN 35

001 TSRS 37

11 o TSP SRSR 39
(ST SO ST PR R P URTPPPPTURRPRUROIN 41
VLT 657 (] o FO PSSO PRTOPTTTSUSRRRURN 43
Flash IMage SYSIEM (FIS)......oiiriie et e e st s eeae st e e e e e reenesneeneesreeneens 45
L1 ST ST PSSRSO PRTOPTRPRSRRRTRN 45

L ESTE L S SO P SS 47

LS LT TSSOSO 49

LS (=T L= OSSOSO 51

L5310 7= Lo OSSOSO 55

LIS 0 L= 1= LSO SRS P RS 57

FIS TOCK. ¢ttt bbb e et b ettt bt 59
LS00 0T P 61

LIS = = RSP 63

LS (=R P 65
Persistent State Flash-based Configuration and CantrQl...........cccveerninnenneineeneenee e 67
Executing Programs from REABOQOL ..ot 70
R 71

L (S oA PSP PP PP PRPTUPPPRPI 73

3. REDUIIAING REUBOOL. ...ttt b et e et e bbb nn s 75
a0 T [T o) o SRR 75
Rebuilding RedB0O0t USING €COSCONTIG.......ceiiveiriiirieirieereete et 75
Rebuilding RedBoot from the Configuration TQOL...........cccoeiriiiniinniinceee e 76

Z oo E= A o T = To | =To Lo TP 79
L gL ol 0T o] o APPSR 79
Load and start a RedBOOt RAM INSTANCE.......cooiiiiiriiieeere e sr s 79
Update the primary RedBoot flash image..........ccooiiinineiic e 80
Reboot; run the Nnew RedBOOL IMAGE.coreririierieee et sre s 81

oI [11 e= 1L F= T = U Lo I =] 1T 83
AM3x/MN103E010 Matsushita MN103E010 (AM33/2.0) ASB2305 Board.......cc.cccevvrervrrennnnnn. 83
OVBIVIBW.. ..ttt ettt et h ekt b e e et b et a e e bt e b e s b e se et e s e b e bt eb e eb et e e e st ebeeb e bese e e eneebennees 83
INItIAL INSTAITALION......ccuiitieeie e bbb e 83
Preparing to program the Doard............cccco e iieieciccese e 83

Preparing to use the JTAG dehUQQEL.......ccvieeieveeeee ettt 84

Loading the RAM-based RedBoOt Via JTAG......ccccceierieneseseseseeee s see e e snens 84

Loading the boot PROM-based RedBoot via the RAM mode RedBoat.................. 85

PAXo o 11 o] aF= 1 @010 0 1 4= T T - 86

LT g aTe] Y 1Y = o LT 87

ReDUIAING REUBOOL.........couiiiieiicieriete ettt ettt b e s ebe e 87
ARM/ARMT7 ARM EVAIUALOI 7T .ottt sttt sttt sae st seesee e e e enesneees 88
L@ YT 1SR 88

T L= U gy r= 11 = o] o USSP 88
QuICk dOWNIOA INSLIUCTIONS.....c ettt ettt ae st e se e e s e 88
Special RedB0Ot COMMEANTS.ciiiiiririeiteieie ettt see et se e ese st see e e e eneenesneees 89
LT g aTe] YA 1Y F= T o LTSS U PP 89
RebUIIAING REABOOL........coiiiee e et st eb e 89
ARM/ARM7+ARMO ARM INEEGIALOL......citiitiieiitieeirere ettt st sbe e s sae e 90
L@ YT 1 RO 90
INItIAL INSTAITALION......eceeieiieeie e et st sb e 90
(@18]To3 1o [0)1¥/] 0= To T 51 1 £ U L1 1[0 o 1S 90
Special RedBOOt COMMANTS.......cceeiiiiiiieieeeete et e s sae e ae e sreesesneeneas 91

Y =70 0 0] Y 1Y/ =T o T PSSR 91
[q=T o 1N o TaTo T = =Te | =To Lo A S 92
ARM/ARM7+ARM9 ARM PID Board and EPI Dev7+DevA........ccccoveireieniniennense e 92
L@ Y= YT OSSO 93
Initial InStallation MEthOd.........cccoiiiiieeee e 93
Special RedB0Ot COMMANGS......cccieeriirieeresieseeesese e see e e s s ste e e e esesseseeseeseeseesenseses 93

[V =70 0 0] Y 1Y/ =T o TSP SP PO 93

(=T 01011 To [T aTo T =T | 2o) AR 93
ARM/ARM7 Atmel AT91 Evaluation Board (EB4Q)..........ccccerereeemereirseneieesesesie e seeseeesseseeens 94
L@ YT 1S 94
Initial Installation Method.cccecveeiiirese e ere e 94
Special RedB0o0Ot COMMEANAS........cociriiiire bbb 95
LT g aTe] Y 1Y = T LTS 95
ReDUIAING REUBOOL ..ottt ettt st e ebe e 96
ARM/ARM?Y Cirrus Logic EP7xxx (EDB7211, EDB7212, EDB7312)....cccccceevivrivnrriereneeeneneens 96
L@ YT 1 SRR 96
Initial INnstallation Method.c.oo e e 97
Special RedB0o0Ot COMMEANAS........ccciriiiriiirieriee et 97
MEIMOTY MBS, ... ettt r e r e e e e et a e sr e r e b e et erenns 97
Platform RESOUICE USAOE........ceiieiirietiriete sttt st b e ebe e b ene e 98
RebUIIAING REABOOL........ooiiee ettt ebe e 98
ARM/ARMO Agilent AAED2000..........cccoeirirerisierisieesieeseeesessesesesessesessesessesessesessssesessessssessssessssens 98
L@ YT 1 USRS 98
Initial INstallation MEthOd. ..o 98
RedBoot as Primary BOOIMONITOL.........cciiiiiiieceeerese e 98

Special RedBOOt COMMEANTS......ciuiieeirireriisieie ettt r bbb e e e neeaas 100

Y =70 0T0] Y\ F=T o TP TRTR 101
(YT o 1N 1o Ta o mT=Te | =To Lo A O S 101
ARM/ARMO Altera EXCAlIDU........ccoiiiei et e e 102
OVBIVIBW. ..ttt sttt ettt sttt h b et e e et e e e bt e b e b sE et e R e e b e e bt s et eb et eneeneebeebenbeseeneeneenennis 102
Initial INstallation MEtNOd.cooiiiiii e 102
FIash ManagemENt...........ccoieieieiee ettt st s s ae b et e e enneneas 103
Special RedB0Ot COMMANGS......cciiieueriresiiseriesee s se e ste e e s re e e e sestestesaesaeneenenses 103

Y =70 0 0] Y\ F=T o SRS PPP PSRRI 103

Vii

viii

ReDUIAING REUBOOL ..ottt 104

ARM/StrongARM(SAL110) INte]l EBSA 285.........coevueeeeeerereseesieessesssssssssssssesssssssssssssssssssssssenss 104
L@ YT 1 PSSR 104
Initial Installation Method. ..o e 105
CommuniCation ChANNELS........cco i s 105
Special RedB0o0Ot COMMEANAS........cciiriiiiiriirieree ettt 105
LT g aTe] YAV F= T o LSS PR U UTU R 105
Platform RESOUICE USAGE......uceeireeieitirie ettt sttt st st e e ae bbb e neeneas 105
RebUIIAING REABOOL........ooui ittt et sb e bese e eneas 106

ARM/StrongARM(SAL100) INtE] BIULUS......eiuiitiieieirie sttt s 106
OVBIVIBW.. ..ttt sttt ettt sttt a et e b b e e e et e bt e b e b sE e e e st e Re e bt e b e e b et e e e e eaeebenbeseeneeneenennis 106
Initial Installation MethOd.coeiiiii e e 106
Special RedB0OOt COMMANTS.......ccccoiiiiieiesiieie sttt e et eesae e ae e este e e sresaeenens 106
Y =70 0T0] YA 1Y/ =T oSO RURPRR 106
Platform RESOUICE USAQE........ccveeerieceeie ettt e e e ne e e s reeneaneesneennas 107
(YT o181 e TaTo T = T=Te | =To Lo AU 107

ARM/StrongARM(SA1100) Intel SA1100 Multimedia Board............ccccovvveveevvieeceseeese e, 108
OVBIVIBW. ...ttt ettt sttt s ettt sses et e st s e e s e st e b e s e e b e e e b e e e b en e e s ene b e ne s s enenaesestebentebe s enanes 108
Initial Installation MEthOd..........ccoeiirireee e e 108
Special RedB00t COMMANGS......ccueiieirirerieseeseeesese s e seeseeae e sse e ste e saeseesesseseeseeseessesesses 108
LT T 0 1Y F= L3S 108
Platform RESOUICE USAQE. ... cueieeeeeriesierieseeseeessesiesteseesteseeseeeesestessesaesssnsssessesssssessessenseessens 109
(=T 01011 [o [TaTo I =T | 2] o) A SRS 109

ARM/StrongARM(SA1110) Intel SA1110 (ASSADEL).....ciiiirrerere e 109
L@ YT 1R 110
Initial Installation Method.cccoeeieeiere e e eenens 110
Special RedB0o0Ot COMMEANAS........cooiriiiririeree e 110
LT g gTe] 1Y = T LSO P PO TR PR 110
Platform RESOUICE USAOE........ci ittt 111
ReDUIAING REUBOOL.......c.couiiiiiieiereeie ettt 111

ARM/StrongARM(SA11X0) Bright Star Engineering commEngine and nanoEngine............ 111
L@ YT 1 PSSR 111
INItIAL INSTAITALION. ...ttt see et ne e eneas 112
D011V a1 (o= To I T £51 110110 1TSS 112
Cohabiting With POST iN FIASH.......cccoiiee e e 113
Special RedB0OOt COMMEANTUS......ciiiieererieriisieie ettt r et se e sb e b e e e e eneenas 113
LT g aTe] YA AV F= T o LTSS PR PR UTPPUR 114
NANO PIALFOIM POLL.......iitiii it et ae bbb ene s 115
ETNEINET DIIVEL. ...ttt ettt b e b s e et a et be b be b e e e eneas 115
RebUIIAING REABOOL........coi it e bbb ene s 115

ARM/StrongARM(SA11X0) Compad iPAQ POCKELRC........ceeie e 116
OVBIVIBW.. ..ttt b ettt h bbb e et e bt e b e b se e e e st e b e e bt e bt eb et et et e bt ebenbesee e eneenennis 116
INItIAL INSTAITALION. ...t et bbb ene s 116

Installing RedBoot on the iPAQ using WINdows/CE..........ccccoov e ievevecene e, 116
Installing RedBoot on the iPAQ - using the Compaq boot loader..........ccceeuvneeeee. 117
Setting up and testing REABOOL..........ccccveiiiiiiieeee e enens 117
Installing RedBoot PErMAaNENtlY........cceieieeeeere e e 118
ReStOrNg WINAOWS/CE........cviiiiieseeseeeetes ettt s s e 119

PAo o [ToTq =1 oT0Ta 4 F=T 416 F-T TR 119

MEMOTY IMAPS....ceieeeieiiee e e b e r e s r e s r e e sr e e 119
ReDUIAING REUBOOL ..ottt 120
ARM/StrongARM(SA11X0) INtrinSyC CerfCUDA........coo i 120
OVBIVIBW.. ..ttt sttt ettt st et e st ae st b e et et e beeb e bese e e emeeseeaeebeeben b et eneeseebesbeseeseeneenennis 121

T 1= U gy e= Ul = o] o USRS 121

PaXo (o 1 o] g = I ete] 401 gF= T o £ 30 UPSR 121
LT g aTe] YAV F= T o LSO PR U UTPPUR 122
RebUIIAING REABOOL........coi ittt sb e bese e eneas 122
ARM/Xscale Cyclone IQ803L0.......ccueieeririerierierieie ettt s e s e e b s et ebe b b see e e e eneenas 123
OVBIVIBW.. ..ttt ettt st sttt h et e h b e e e et e bt e b e b sE e e e a e e Re e bt e b e e b et et et eneebenbeseeseeneenennis 123
Initial Installation MethOd. ..o e 123
EFTON COUBS. ...ttt et bbbt b e b b e e e et st e b bt sb e be b e e e e eneas 124
Using RedBoot with ARM BOOIOAEL..........ccceieieeesieiece et 124
Special RedB0OOt COMMANGS.......ccceiiiiieiecieeieese e se st e st e e e sae e ae e eseense e e ssesneennens 125
IQB0310 HArdWAre TESIS.....cccuieiieeerieieesiesieete e esee e ree st s et esre e e sresse e tesreeneenteeneennas 125
(YT 01U 1o TaTo T =0 | =To Lo A 126

LT =T U] 0] £ TP 126
MEIMOTY IMIAPS. .. ettt sttt b e st e st e e sb e e s st e eab e e sbeesateeabeenbeesneeenneenbeas 128
Platform RESOUICE USAQE. .. .ccueeeeeeeiesieriesieseeeetesestestestesaeseeessessestestessensssessesssssessessensenensens 129
ARM/XSscale INtel IQBOB2L........coiiiieeieereeeecte ettt e sae s be st e e reesbesaeesaesbeebesbeeasenbesaeennes 129
OVBIVIBW.....tereteeteestee ettt sttt sttt ettt a bt e bt s e b e b et e b et b e s b e n e e es e s e e b et e b et eb e e nenes 129
Initial Installation MEthOd.........cccoueiiiire e e 129
SWILCH SETINGS. ..ttt ettt st b et b e nenes 130

[5 2 @ To 1= SRS 130
Special RedBo0Ot COMMEANAS........ccoiriiiririereere e 132
MEMOTY TESTS.....oiiiceee e e e 133

Repeating MEMOIY TESES ..ottt st st 133
Repeat-On-Fail MEMOTY TESIS.....coiiririeerrieenieeriee et 133

ROtAry SWILCH S1 TESL ..ottt 133

7 SEgMENT LED TESIS....oiiiiiiirierere ettt s 133

182544 Ethernet ConfIQUIAtiON..........coeireirrennieeriere et 134

Battery StatUS TESL......ciiieeceieri i e 134

Battery Backup SDRAM MEMOIY TESL.....ccoriuiririierieirieierieie st 134

B L1 G =T OSSPSR 134

POl BUS TOSL. ettt sttt s see s he b b e e st e bt saeeseesaeeeesbeennanes 134

(61 LU 0= Tox o T= 31 o o o NSRS USRS 135
RebUIIAING REABOOL........ooi it et bbb se e ene s 135

L1 (T AU o1 TSP PR PR UTPPR 135
LT g gTe] YA\ F= T o LT TP PR UTPRUR 136
Platform RESOUICE USAQE........cci ettt sttt s e e e te e e e e nteeneennas 137
CalmRISC/CalmRISC16 Samsung CalmRISC16 Core Evaluation Board...........c..ccccevvennene. 137
OVBIVIBW. ...ttt sttt ettt stttk be et b e et et e bt e b e b se e e e a e e b e eh e e et eb et e nb e st e bt ebenbeseeneeneeneenis 137
Initial Installation MEtNOd.cooeiiiii e 138
Special RedBOOt COMMANGS.......cccueieiiieiesieeiesr et ste st te st e e e see e e sae e ssaessesseeseesneeneens 138
Special Note on Serial ChannEl...........coi i e 138
[g=T o101 [o [TaTo T =T | 21 o A SRS 138
CalmRISC/CalmRISC32 Samsung CalmRISC32 Core Evaluation Board...........cccccecvrveuenene. 139

OVEIVIBW. ...t seeee et eesetee s et e e sttt e seaeee s beessbesssaasessaeesasbeesaseesssbeeessbeeesaseessabesssbessssesssreesanrensns 139

Initial INstallation Method.cooveeiiiie e e eneas 139
Special RedB0o0Ot COMMEANAS........cciiriiiiiiiriereere et 140
Special Note on Serial ChanNEl.........ccoiii s 140
ReDUIAING REUBOOL ..ottt e 140
FRV/FRV400 Fujitsu FR-V 400 (MB-9309L1)......c.eeieeeeeeierie et e e sre s s eenes 140
OVBIVIBW. ..ttt ettt ettt st ae e e e et e e e aeeheeb e s eesE e e emeemeeaeeaeeb et enseneeneabeneeseeseenseneenas 140
Initial INstallation MEthOd. ..o e 141
Special RedBOOt COMMEANTUS......couiieiriririisieie ettt se e sb e b e e e e eneenas 141
IMEIMIOTY IMTBIDS. ..ttt ettt ettt bt bttt ae et bt s ae e e eb e e st eae e e e seesaeebesbeennanbeeneannas 141
RebUIIAING REABOOL........coiiiiee e et bbb eneas 141
IA32/X86 XBB-BASEA PC.....coeoieieieiiieeie sttt sttt sttt sttt st sttt et et 142
OVBIVIBW.. ..ttt sttt ettt sttt h e ae ettt et e bt eb e b se e e e st e b e e bt e R e et et et et e bt ebenbeseese e e eneenis 142
INItIAL INSTAITALION.......ceeeeieiee e et bbb ene s 142
Flash Management...........ooeeiii ettt e et et e sneennas 143
Special RedBOOt COMMANGS.......ccceiiiieiesieeese e st st te e eae e e e sre e sae e esaesse e esnesneeneens 143

Y =70 0] YA 1Y/ =T o TP RUPPRR 143
[g=T o101 [o [T aTo I L=To | 2o) A SRS 143
MIPS/MIPS32(CoreLV 4Kc)+MIPS64(CorelV 5Kc) Atlas Board........c.ccovevreienieiennenenienenenne 143
(@Y =T YT SO S 143
INTEAL INSTAITALION. ...t et 144
QUuICK doWNIOAad INSTIUCTIONS......ccviiiieeciecteeteere ettt e b e 144

Atlas download FOrMAL.........ccoveerrinneree e 144

FIasSh MaNAGEMENL.......coiiiiieee bbb et 145
Additional coNfig OPLIONS.....c.civeiriirre e 145

X [o 1 To] g =1 I t0] a1 4= U o £ 145

LT (ST AU o TP PO TR 146
LT g gTe] 1Y = T LSS P PR PR 146
ReDUIAING REUBOOL ..ottt bbb 147
MIPS/MIPS32(CoreLV 4Kc)+MIPS64(CorelV 5Kc) Malta Board..........cccoeeveeveeenenenenienennee 147
L@ YT 1SR 147

T 1= U Y =1 =1 o] o TSRS 147
Quick download INSLIUCTIONS........cieieereirere et s enen 148

Malta download fOrMAL........cccooiii et 148

PaXo (o 1 o] g T I te] 441 gF= T o £ 30 SRPS 148

L1 (] 40 o1 TP PR PRSPPI 149
IMIEIMIOTY IMBDS. ..ttt sttt ettt st b et b e s he e et s ae e e se e s ae e e eb e e e e ebeeaeesbesae e b e st e ennanbeennannas 150
RebUIIAING REABOOL........ciiiieee et et bbb ene s 150
MIPS/RM7000 PMC-SIErIra OCEIOL.......ccoiueirieerieiesisieisie ettt st et 150
OVBIVIBW.. ..ttt sttt ettt sttt h b s a b e et et e be e b e b se e e e ae e R e e bt e b e eb et e e et e Rt ebenbesee st eneeneenis 151
AddItioNal COMMEANTS......c.oiiiiiir e bbb e e e 151

Y =70 00] YA 1Y/ =T o TSRS 151
[Y=T o 1N 1o TaTo T = T=Te | =To Lo A S 152
MIPS/VRA375 NEC DDB-VRCASBT75.....coi ettt sttt sttt 152
OVBIVIBW. ..ttt sttt ettt etk h b e b e e e et e h e b b se e e e st e b e e bt e et eb et et e ne e bt ebenbeseeneeneenennis 152
Initial Installation MEthOd..........ccoeiiriiee e e 153
Special RedB00t COMMANGS......ccciieiriririisereseee e s e e e saeee e s re e sae e sestesteseeseeneenenses 153

MEIMOTY IMTAPS. ...ttt ettt st sb e st et e e sb e e s bt e eab e e sbeesaeesabe e beesseeenneenbeas 153

LT LSIA A= TR 154

ReDUIAING REUBOOL.......c.couiiiiiieereete ettt bbb 154
PowerPC/MPC860T Analogue & Micro POWErPC 8BQT.........ccoverrererieinieeriee e 154
L@ YT 1SS 154
Initial INstallation Method. ..o e 154
Special RedB0o0Ot COMMEANAS........cciiriiiiiriirieree ettt 155
LT g aTe] YAV F= T o LSS PR U UTU R 155
RebUIIAING REABOOL........coiiiieeee et s sb e eese e eneas 155
PowerPC/MPC8XX MOLOrOIa IMBX......couiieeririirtinieie sttt sbe b s se e enas 155
OVBIVIBW.. ..ttt sttt b et sttt h e ae bt e e e et e bt e b e b sE e e e a e e Re e bt e be e b et et e e eneebesbeseeseeneenennis 155
Initial INstallation MEthOd. ..o e 156
Special RedB0oOt COMMEANGS......couiiiiriririinieie ettt b bbb e e e e enes 156
Y =70 00] YA 1Y/ =T oSSR 156
(YT 01U 1o Ta o mT=Te | =To Lo AU 157
SuperH/SH3(SH7708) Hitachi EDKT7708..........ccvviirrinnineieesieesiee st sse s sessesens 157
OVBIVIBW. ..ttt ettt b sttt h b et b e e et e bt e b e b sE e e e a e e R e e bt eheeb et e e et eneebenbesee e eneeneenis 157
Initial Installation MEtNOd.coiiiiii e 157
Y =70 0 0] oY\ F=T o TP RUPRPRR 157
(=T 01011 [o [T aTo I =T | 2] o) A SRS 158
SuperH/SH3(SH7709) Hitachi Solution ENgiNe 7709.........ccveereieienesese e 158
(@Y= YT SRS 158
Initial Installation MEthod.........cccoueiiiiie e 158
Special RedB00t COMMANGUS......cciieeeririsiirerereeeeese e seereeeeesse s testeseeseesesseseesaeseeseesenses 159
LT g aT0] Y 1Y = T LS PP P PP 160
(gL TCY B D1V SRS 160
ReDUIIAING REUBOOL.......coouiiieirieeneete et et 160
SuperH/SH3(SH7729) Hitachi HS7729RCl......c.oooiriiceree et 160
L@ YT 1SR 161
Initial Installation Method.cooveiiiiie e e eneas 161
Special RedB0o0Ot COMMEANAS........coiiriiiiriirieeree et 161
MEMOTY MBS ... e e e s s 162
ReDUIIAING REUBOOL ..ottt bbb 163
SuperH/SH3(SH77X9) Hitachi Solution ENGINe 77X9........ccoiiiiiireereeneeseeeeseeseee e 163
OVBIVIBW. ...ttt ettt st et ae st e a et e e e et ehe e b e Eese e e emeeaeeaesaeebenbenseneeneebesbeseeseeneeneenis 163
Initial INstallation Method.o 163
Special RedB0oOt COMMEANTUS......ciuiiieiririeriisieie ettt b et a e sb e b e e e e eneenas 164
IMEIMIOTY IMTBDS. ettt st b et b s he et ae et e e s e e et e eb e e e e ebeeaeesbesaeenbesbeensanbeennannas 165
ETNEINET DIIVEL. ...ttt ettt b e b e e et a e bbb be b e e e e eneas 165
RebUIIAING REABOOL........coiiiieee et et b ene s 165
SuperH/SH4(SH7751) Hitachi Solution ENGINe 7751........ccooiiiineeineeseeeeeese e 165
OVBIVIBW. ..ttt ettt stttk h e bbbt et b e e b e b se et e Rt e b e e bt e b e et et e e e st e bt ebenbesee e e neeneenis 165
Initial Installation MEthOd. ..o e 166
Special RedB0OOt COMMANGS.......ccceeiiiiieiesiieie st eeese st te st e e e sre e e ae s eseeseesreeseesneeneens 166
Y =70 0 0] YA 1Y/ =T oSSR 167
ETNEINEE DIIVEL. ...ttt b e et b e sr b s e e ene s 167
[g=T o101 [o [T aTo I =T | 21 o) A TSRS 167

Xi

Xii

IIl. The eCos Hardware AbStraction Layer (HAL) ...ttt 169

L 11 0T [T 1o T o PSSR 171
7. Architecture, Variant and PlatfOrm..........o.v oottt ettt et saeeebessareereeereesnns 173
8. GENEIAI PIINCIPIES. ...ttt b et b ettt b et e bt se bt se b st b e ne e b et e b e e sbenesrene e 175
ST o L I [1 (T o =Tt TP 177
BASE DEIINILIONS......eiiuiceeee ettt st st e et e e b e et e sbeeaeesresae e testeenrenreeneennas 177
VL3N0 (0 =T oSSR 177

[o 1= I I =T S = U o RS 177
BlaSE BY DES -ttt e e eh e et Rt e ae e eReeRe e be b e e nnenbeeneenas 177

F (0] 4T Y 0 1L SRS 178
Architecture CharaCteriZatiOn.........o.eoeeerirere ettt sb e e e e 178
REQIStEr SAVE FOIMIAL....c.eiciiciecte ettt sttt e sre e e te st e ene e reeneennas 178
Thread Context INILAIZALION. ..o e 178
Thread ConteXt SWILCHING.........cvc e eesre e e 179

=TT 0 1=t o S 180

[| L= T g=Y= Vo = Lo 1) S 180
L0 (o =T gl o T= 14 1= S TSRS 180
== U o To T 01 A=W] o o] o AR 180

(D] =] o] o0 ST RP R SRPR 181
SY=11 0] oJ=TaTo [T a o[4] o JETUT o] o o] o AT 181
SEACK SIZES ..ttt bbbttt bt 181
AdAress TranSIALION.........ooviiriere bbbttt 182
17 [0] o F= LN =0 1 o (=T ST 182
INEEITUPE HANAING. ... et e bbbttt 182
RV = Tox (o] g 410] 0] =] £ 182
INEITUPL SLALE CONLIOL. ... 183

ISR @and VSR MaNAQEMEINL.......c..ciriirirtirieiee sttt sttt s st 184
Interrupt controller MAaNAgEMENL........c.oirieiee et 184

104 (o To3 Qo 11 o PSR 186
MICIOSECONA DEIAY...... vttt et 186

HAL /O ettt ettt st ettt e e et e e ae e ae e aeesbesheeae e beebeenseebeeneeseesaeentesteensantesanennas 186
REGISTEN AUUIESS. ...ttt b ettt b et bbbt et b e ebene 186
REQISTEN FEAM. ... ettt et 187

L ETo 1S (T AR (=TSRSS 187
(O Vo] 1 1S3 0] o1] H R 187
L= Tod o TSI B 41T 0 1S3 (o] o K SRS 188
Global Cache CONtrQl.......c.ccui ettt e sre e e 189
CaChe LINE CONLIOL. ..o et b e b e 190

[T 01T T od £ o £ OSSR TP 191
[T F=To L0 S 1 ToRR T U] o] Lo 4 S 192
] AV ST o] 01 ¢ C PO RSRRIN 192
Target Hardware LIMITAtiONS........ccieveeriiieeiese e sieseetes e e e sre s sresae e essesneseesnesneennens 192

L TN YU o] o L0 ¢ S S PPTRTUP PSR 193

CPU CONLIOL....eititee et ettt st enens 193
TESt-ANU-SET SUPPOIL....cveiticieieeeieiee sttt st re s a et e e sesaesresbesaesaeneenens 194

Y 0111 [T &SSP 194

SCREAUIBT LOCK.....cviieiiietirietee et 195

T 1 (=T 4 U] o o 10 {1 o 196

10. EXCEPLON HANAINGc.e ittt et et sttt 197

HAL STAITUD ..ttt st r b e e bbb r b e e e st er e r e nrenn e e e e 197
VECTIOIS AN VSRSt ettt e st et et e s e s aesaese e te e e e eneeaesteseeseeneeneeneens 198
Default Synchronous EXception Handlingcccooeireineinnennenesieese s 200
Default INterrupt HaNGIING ..o 200
(O o] o I U [o L= SO PE PSPPSR TSP 203
L aT 0T 0T i o] o O RRS 203
HAL STTUCTUIE. ...ttt ettt b et b et e et s et e e e s bt e ae e b e eb e e et ebeeme e seesae e besbeennenbesnnannas 203
HAL ClASSES. ... eteteeeirtirte ettt b ettt ae st be bt e b et et e he e b e s beseess et enesaeebesbesbenbeneeneaneas 203

FIlE DESCIIPLIONS.. ...ttt ettt bbbt be b b e e e e e e neeae b sbe s besbe e e e eneas 204
COMMON HAL ...ttt bbb e e me e s beean e 205
AFCNITECTUIE HAL ...ttt et b b e 205

VATTANT HAL ..ot ettt b e b e e e 206

PIALTOIM HAL. ...ttt 207

8D 1= U Y2 AN S 208

Virtual Vectors (eCos/ROM Monitor Calling INterface).......cccevvveevieseeiese e 208
Y (0T Y= Tox (o] £ T TP USROS 208
Initialization (or Mechanism VS. POICY)....ccccciiiieviesieeccre et 208

Pros and Cons Of VIrtual VECIOIS.........ccuvriririnnerieesee ettt 209

AVAIIADIE SEIVICES......eiiieeiiieciereete e e 210

The COMMS ChANNEIS.......coiiiirerer et 210
Console and Debugging ChannEls.........cccovviverenereeiecece e 210

V7= Vo | L1 T R 211
Controlling the Console Channel.........c.ccrn s 211

Footnote: Design Reasoning for Control of Console Channel...........cccocovcvveennee. 212

The calling INTEIfACE APRL.....ooee bbb 213
IMPIEMENTEA SEIVICES. ..o 213
COMPALTDITY....ceeeeeeeet bbb 214
Implementation detailS...........oceriinen e 215

N TV = o {010 T o i RS 215

NEW ArChItECIUIE POITS.....viuiieeiirieiireetere ettt s b et b e sr e snene e 215

1@ o = T 1= ST SRSSRRN 215
AVAIIADIE PrOCEAUIES.......i ettt ettt s enas 216

LU LS Lo [T PSSP 217

LO70] 101 0= 11] o1 1RSSR 218
IMplementation DEtailS.........co i e 218

NEW PlatfOrm POIS ..ottt st 218

HAL COAING CONVENTIONSottt ettt et ae st se e e b aesae s b e be s et eaesbesbeseeseeneeneenes 219
IMPIEMENTALION ISSUBS....ctiieieieeeee ettt ettt s se et sae bbb e e e e eneas 219
SOUICE COAE TELAIIS ...ttt sb e 220
NESIEA HEAUEBES ...ttt ettt b e b b e et a s bbbt be e e eneas 221
Platform HAL POMING.....ccoiieieceeeeese sttt s sr e s sre e e saesna e testeeneanseennennas 221
HAL Platform POrtiNg PrOCESS......cciiiieie ettt st e e ste ettt e e nse e eneas 222

BB OVEIVIEW......eiuiitiitiiie ettt et e n e 222
(=T 0 I o) V0] (= o TS 222

MiNIMal FEQUITEMENTS.....c.vcuiciicieiee ettt s s resbesbe e eneeneas 223

FNe [0 [T g o IR (=T (0= 224

HINES bbbttt b e e b e e b e sttt b ettt ene e ne e 225

Xiii

[A I AT a0 1 ¢ T O B] TR 226

EC0S DAtADASE. .. .cve it e e ne e enens 226

CDL Fil8 LAYOUL......eeeeiectieetereeteeste ettt 227

SEAITUD TYPE ittt et ettt r e r e n e eeneas 228

BUII OPTIONS. ..ttt eb et b e b e ene e 228

CommMON Target OPLIONS. ...c.eieeviieieire sttt b e seaes 230

Platform MeEmOKY LAYOUL.........couiieeeeeeiese ettt see e see e e eneas 233

LAY OUL FIlES. ..ttt ettt b e et b e e 233

RESEIVEU REJIONS....c.eiiieeeiee ettt et 233

Platform Serial DeVICE SUPPQLL.......ccoiiii ittt sbe e eneas 233

Variant HAL POMING. ..ottt s sttt e be b b e e e e e eneenes 235

HAL Variant POrting PrOCESS.ccccoiriririe ettt sttt st s e e et see e e s 235

HAL VArTANT CDL.....iieiieit ettt et be bbb e e eneas 236

L= Tod o TSI 1] o] 0T USSP 237

F ol g1 (= To (8= I AN I o T] o 238

HAL Architecture POrtiNg PrOCESS.......cciiviiieeri ettt st ae st sttt ae st enas 238

CDL REQUITEIMENTS. ...ttt sttt sttt b bt s se e sse bbb e e e e se b e nbe e e e e eneenis 244

12, FULUIE AEVEIOPIMENES ...oiitiiiteiete sttt sttt sttt ettt st st st e ettt s st be e et et sbe e ebene 247
IV. The ISO Standard C and Math LIDFArEScccoeireirieiiieineenese e 249
13. C and Math lIBrary OVEIVIEWN........cc.ciiviereeeece st e e ne e nesae e aenaennnnens 251
INcluded NON-ISO FUNCLIONS.......coiiieiree e s et 251
Math library compatibility MOGES........coci i e 252
LR0T= 11 =T o TSSO 252
Thread-safety and re-ENtranCY..... ... 254

Some implementation EtailS..........c.oiiiiiiree e 254
TREEAM SAELY. ..ttt bbb bbbt en s 256

C IDIANY STAMTUD....veeeeeeereeiere ettt ettt et b et b et b s e b s e b s et e st e b e st et et ebe e seenesnene e 256

V. 1/O PacKage (DEVICE DIIVEIS)......ciirieeeuerieriesieeieniereeeetestesteseeseeseesessessessesseseeseeneesesseseessensensssessessessesseseeneesens 259
I 1o To 18 o3 1T o SRR 261
LT U LY A = S 263
16. Serial driVEr AELAIIS.........o ettt e st e e bbb e ae e e e enea 265
L VAT A E= U B 1Y TP 265
RUNEIME CONFIGUIATION......ei ittt e e e bbbt se e ene s 265

F o I BT = 1] RS USROS 267

(oY (O T/ £ L= ST RRURTRURTPTSRRRN 267

(oo N [T (=T >V 267

(oo I [T o = A o 1o 1 267

(oo I [JE=1] A oo 11 1o 270

TTY AFIVET ot b bt h bbbt b e b e e et eRe e b e s b e sb e e e neese e bt eaesb et e be e eneeben 271
RUNLIME CONFIQUIALION.......eiicieie et sttt e e e e ene e e 271

AP ETAIIS. ...ttt b b e e et ae b b e e e 272

17. HOW 10 W @ DIIVEL...c.cctiieeteieieesie sttt st sttt ettt st st sttt b et st st et et e et et 275
How to Write a Serial Hardware INterface DIiVEL........cocccuvrirriirrie e 276
[V =T oI =t 1 Y SRS 277

Serial Channel STIUCTULE.........ccoveirrie et 277

Serial FUNCHONS STTUCIULE.......coviiiiieicrie ettt 278

(0= 11| o= Tox LGRS 279

Xiv

Serial testing With SEr_filter... ..o 281

= 1110 = LTSRS 281

LI LS d (0] T o RS 281

LI LIRS = U ST PR 282
Serial FilEr USAQR ettt b e s 282

F N Lo (SR o] T = V1 [= RS 284

D= 0T8T o 11T OSSR 284

18. Device Driver Interface t0 the KErNel..........ocoiiiiiii e e 285
INEEITUPE IMOAEL ...t ettt b et ae b e s be b e e e e neenas 285
Y/ o3 a 0] g1 F7Z= 11 [o PO USRS 285
Y1V RS U T o] o[SO USRS PR PR 286
DEVICE DIIVEI MOEIS.ottt ettt b e e et ae bbb e e e ens 286
SYNCNIONIZALION LEVEIS......oeeceee ettt enee s 287
JLILLT= 2 = TSRS 288
oYL o I o L V2 £ g 0T3RS 288

Lo Lo I o V2 1= 0 1 o3RS 289

oo I o V2] o L1 (o o -G [TS 289

oY e | V) o]] (oYt Qo (=T 1 {0 Y TR 289

oY o | VY 1] (oY o TR 290

(oY o | V) o]] (oY od [T T ST 290

oY o | V) 1] oY 2 (/ST 291

(oY e | V) 011] (0Tt (=) TR 291
CYg_drv_SpINlOCK _SPIN_INISAVE.....ccvceeeresiiseereeeee sttt ens 292
CYQ_drv_SPINIOCK_ClEAr_INTSAVE........ccuvuiirieerieirieereet et 292

(oY (o T o L Y20 T [0 Tox OSSR 293
CYO_ArV_dSI_UNIOCKcuiieiiietireeteete et 293

(oY (o T o YA 010112 G 1 APPSR 294
CYO_ArV_MUEEX _ESTIIOY.....cvereeteeetereetiirieerte sttt b bbb s b enes 294
CYO_ArV_MUEEX_TOCK.ceiectiectireeteee ettt 295
CYO_ArV_MUEEX_INYIOCK......ceiieciieeteeetiete et 295

CYQ_ ANV _MUEEX_UNIOCK ...ttt enas 296

(oY (o e | VA 101 SN (= (==] PSSO 296

oY/ o | £V oo Uo [1 1| FH TSRO 296
CYQ_ArV_CONO_OESIIOY....cveuieetireeteieteiet ettt b bbb n et b s b e enes 297

(oY e | VA oo Lo [N 1= | PR SOSR 297

(oY e | VA oo Lo [T o o F= 1 NPT 298
CYQ_drv_CONA_DrOAUCASE......cceiieeeeieeere et s 298

(oY (o e | AV 101 (1A U] o) QoI (=T L= SRRSO 299
CYQ_Arv_iNterruPt_delELE.......oouiee e e e 300
cyg_drv_interrupt_attaCh.......oooo s 300
CYg_drv_interrupt_detach........coov e e e 301
CYQ_drV_iNterrUPL_MASKcc.eeeeiee ettt et e s e ae st ebe e e nnesneennens 301
cyg_drv_interrupt_mask_iNtUNSALE........cccocveieri e 301
CYQ_drv_interrupt_UNMASK......c.ccveceeieitieieseete e e ste st e st esae e e sae e aesteeseeeesneeseesneennens 302
cyg_drv_interrupt_unmask_iNtUNSATE.........ccccerviceere e 302
cyg_drv_interrupt_aCkNOWIEAGE.......c.ccviiiiieeeceee s 303

oY (o e | AV 141 (=T U o) Aot o] g ¥i{e [V o= TR 303

oY/ e | AV 141 (=14 U 1 A (==Y TR 304

XV

XVi

CYQ_drV_iNtErrUPt_SET CRU. . ecuiieeeeietieeieert ettt 304

CYQ_ArV_iNtErrUPL_gET CPLL.ceceeeeterieteeete sttt 305

(oY TR 15 S TP USSR PP PP 305

CY O DS R e e r e e e 306

VI. File System SUpPOrt INFTASTIUCTUIE ..ottt ettt st e e bbb e e s 309
TR Voo o L8 ox 1T o USSR USSRN 311
20. File SYSIEM TADLE......oi ettt bbb et b e b b e e e enas 313
A 1Y (o TH T = o[TSRO 315
B 1= I o =TSRSS 317
A T B L1 {=Tot (o] 1=V U PO 319
B Y Tod a1 £ 0] a1 &= L1 o] o S 321
25. Initialization and MOUNTING........cooiiiie et st e e s et esae e e e saesneeneesreennenes 323
26, SOCKELS.....eiteeeeee ettt ettt b bt b et e a Rt h e R R e R e e R e R e Rt R e R e R e e et e Rt b e b e e e e e eneens 325
27 SEIBCL... ettt b b e e a et h e R R R e e R e R e Rt R e b e R e e et eRe b e b e e e e eneens 327
B T B LY [T TSRS P R URT PP 329
29. WIitiNg @ NEW FIlESYSIEIM.....c.cceiictiiesieseeeetis st ste et se e s bt e e e e e ere et e teseennenaeneens 331
RV O I o] - Y RSSO 335
GO I I Lo IO o o O I N o] = Y/ 337
O I o] - Y/ SRR 337

P CI OVEIVIEW.teeeeeeieeesie e st ie et e e te st te e esee s esessesseseesseee e eseesessesaesaesseneesessessesenssensensenensens 337

INILALIZING ThE DUS.....ceieee e e 337

SCANNING TOF HEVICEScuiiiiiiicterietee bbb 337

Generic config INFOIMALION........cociriiii e 338

Specific config INFOrMALION........covciriii s 339

AllOCALING MEIMOIY. ..ttt ettt b bbb e b ettt nbne 339

INTEITUPTS ..ot e e e s n e e esr e s 340

ACHVALING 8 HEVICE........iiieiieeitee et ebee 340

T 5SS 341

PCI LIDIrary refErENCE.ccucuiiteicte ettt bbb e b e nbene 341
PCILIDIANY AP oottt ettt 341

D= 11 011 (o] g USSR 342

TYPES ANd data STTUCTUMES....cvi ittt st e et be e e 342

FUNCLIONS. ...ttt b e bt et b e e b e b se e e et eneeaesbesbebe b e e enenneas 342

RESOUICE @lIOCALIAN......couitiieiiieeee ettt et bbb e e eneas 344

PCI Library Hardware APL..........co ettt s s eneas 345

HAL PCI SUDPOI ...ttt sttt st se st e e see e besbe e s e sne e e seesmeebesbesnsansesneennas 346

VIII. @C0os POSIX cOMPAtIDIIILY TQYEEcoueiiiiiiee e s 349
31. POSIX StanNdard SUPPOLL.......ccieieiierieseeiesteereeseseesee s e etesteeseessesseeaeseesseesesseessessesssessessessessensennes 351
Process Primitives [POSIX SECHONcccviieieiieiereeeesieseeie st ee st eae s sneeneas 351
FUNCtions IMPIEMENLEM.........cc.coueeee e e s re e nn e eneas 351

FUNCHONS OMILEEA........cciicieirieere sttt sttt 352

[N (PP PP PRR 352

Process Environment [POSIX SECHONA]......ccovviiereieeeisiseseseeesese sttt sae e eneens 352
FUNCtions IMPIEMENLEM.........cc.ceeeeece e e s nn e enens 352

FUNCHONS OMILEEA........cctiiiieiieee e sttt 353

N[0 (2SSOSR PUPRPRRTRTP 353

Files and Directories [POSIX SECHON.S].....ccccoiiiiiieirireeree e 354

FUNCIONS IMPIEMENTEL.......ciiiiiieeee bbb 354

FUNCHONS OMITLE......couiiiiie ettt st se b beseeneenenneas 354
N[0 (TSP PUPTRPRRTPTP 354
Input and Output [POSIX SECLON B].....ceiiriririeririereeieeree st 355
FUNCIONS IMPIEMENTEL.......ciiieiieeeee e 355
FUNCLONS OMITLEM..... ettt et ae bbb e e e e eneas 355
N[(TSP 355
Device and Class Specific Functions [POSIX SectiQn.Z]........ccoeorreninineneieeese e 355
FUNCLioNS IMPIEMENTE.........oouiee e et bbb 355
FUNCLONS OMITIE......cotiitiie ittt bbbt bese e eneas 356
N[(TSRS PR PR UTPRR 356
C Language Services [POSIX SECHON.B......cooiiireriirirerierieieeeere e e 356
FUNCLIONS IMPIEMENTEM........cceeee e st e st e e e 356
FUNCLONS OMITLEM. ... ettt et bbb e eneas 357
N[(TP PP 357
System Databases [POSIX SECHOM.O]....ccvieiiiieie et 357
FUNCLIONS IMPIEMENTEM........cceee et e st e e e 357
FUNCHONS OMILEEA........ectiieieereeeseeie ettt sttt 357
NN (TP PP 357
Data Interchange Format [POSIX SeCtion 10]......ccccevueieeirirererieisesesesesiesaeesse e see e seeeesennes 358
Synchronization [POSIX SECHON LL]....cccoiiiiieisesereeeees s seee et s 358
FUNCtions IMPIEMENLE.........ccceeeece et s ne e enens 358
FUNCHONS OMILEEA. ...ttt sttt 358
N[0 (=2 TSP PPPTRPRRRTP 359
Memory Management [POSIX SECHON 12]......cccoiiiiriiirirerieenne e 359
FUNCHIONS IMPIEMENTEL.......ciiiiiieeere bbb 359
FUNCHONS OMITLE......eceiieiie ettt s e e ene e snesee e eeneenennens 359
N[0 (2SO P PP PPPTRPPRTPTP 359
Execution Scheduling [POSIX SECHON L3].....ccviririeirieirieereee et 360
FUNCIONS IMPIEMENTEL.......ciiiiiieie bbb 360
FUNCHONS OMITTE......cotiieiie ettt et see e e e e e e eneas 360
N[0 (ST PP P PR PPPTUPPRTPTP 360
Clocks and Timers [POSIX SECHON L4]......ccouiiiieireereieresieesiee st 361
FUNCIONS IMPIEMENTEL.......c.iiiiiieieee bbb 361
FUNCLONS OMITLEM......cceiieeie ettt et ae b bt e e e e eneas 361
N[(TSP P PRSPPI 361
Message Passing [POSIX SECHON LA]...cccuriiiiiiieieeieeesiesie e s e enas 362
FUNCLions IMPIEMENTE.........oc.iie et e 362
FUNCLONS OMITLE......cotiitiie ettt et sae bbb e neene s 362
N[(T TP TP PR UTPRUR 362
Thread Management [POSIX SECHON L8]ccvcieiiieeieesesiesesteee sttt sne e e 362
FUNCLIONS IMPIEMENTEA........cceeee et e st eae e 363
FUNCLONS OMITLEM. ...ttt e e sb e e eneas 363
N[(PP PSPPSR 363
Thread-Specific Data [POSIX SECHON L7]......cciiiieiiieeiee s steeeeste e se st e e e e snesneeeens 364
FUNCtions IMPIEMENLE.........ccoceeeee et s b e e na e eneas 364
FUNCHONS OMILEEA.......ectiicieirieeresee et sttt 364
NN (TP PRSPPI 364

XVil

XViii

Thread Cancellation [POSIX SECON L8.......ccviriirieirieereereeee e 364

FUNCIONS IMPIEMENTEL.......ciiiiiieeee e e 364

FUNCHONS OMITTE..... ettt st et ne e e see e eneeneas 365

N[0 (TSP PR PUPTO PR 365
NON-POSIX FUNCLONS......cuiitiieieeeieeie ettt st s ae sttt e e ese b e sbeseeseeneeneenes 365
GENETAl I/O FUNCHIONS ...ttt ettt e a et e e e sbesbesee e e e eneenas 365

SOCKET FUNCHIONS. ...ttt et s se e ae st et et e e e neebeseesee e e e eneenas 365

N[(T TP PP 366
References and BibliOgraphy........cccc ittt e st et enea 367
O 71 I]SO 367
B2, LUTRON APttt sttt sttt se et s et e st et et et ese st es e st es e seebese et e seebe st ebe e ebenestenessnsenens 369
INErodUCEION TOLITRONttt ettt et ae bbb e e e e enes 369
JUTRON GNAECOS. .. ettt sttt sttt sttt be bt be e et eRe e b e s besbese e e eneesesaesbesbenbeneeneenens 369
Task ManagemeNnt FUNCHIONS........ccuoii e s et e st e st e e te st e s e ntesneennesnneneens 370

[o] o 1= o] (] o OSSP 371
Task-Dependent Synchronization FUNCHONS.........cccviiii st eenens 372

T 0 o] A T=Td (T SRS 372
Synchronization and Communication FUNCHONS.........c.ccvviiirirereine e 373
0] o] A T=Tod (T SRS 374

Extended Synchronization and Communication FUNCHONS.........ccceevvvvvrinerierene e 375
Interrupt ManagemMeNt fFUNCHIOMNS........c.cviereeei s e e bt e e e eneens 375

ST g o) ol g =Ted (1 oo OSSR 376

Memory pool Management FUNCHQNS. ..ot 376
ETOr CRECKING ...ttt bbb et 378

Time Management FUNCHONS. ...t 379
ETOr CRECKING ...ttt bbb bbb et 379

System Management FUNCLIONS.oo ittt b e st seene e 380
ETOr CRECKING ...ttt ettt 380

NEtWOTrk SUPPOIT FUNCLIONS. ..ottt ettt 380
HITRON Configuration FAQL........c ettt eneaes 381

DO O e S] = Ted (S U o] o[i {0 =T O 0 1 YRS 387
S I =l (g (=T g eI B 1Y T Gl D= T | o TRV 389
Y= 10 4] 0] (ST 0T [=SSR 391
35. CoNfiGUIING [P AGQAIESSES.......coeiuiiteieiereeeet ettt sttt s se et b e b bbb e e e et ebe st et see e e e eneenas 393
36. TeStS and DEMONSIIALIONS......ccciiitiieieie ettt sttt bbb et be bt e e e e e eneenas 395
[0] o] o= o3 Q1= 1] (=TSSR PRTUTTRSO 395
BUIlING the NEIWOIK TESES......ciiiieicece ettt sttt st e b eneenas 395
SEANAAIONE TESTS.....couiititee ettt bt e e bbbt bt b e b e se et b e b e be e e s e e e e ene e 395
PeITOIMEANCE TOSL.. .ttt ettt b b et b bbb e e b et eae b e sbe s b e nn e e eneenes 396
INEEIACTIVE TESTS. ...ttt et bbbt b b e e e e se e bt e bt bt b e e b et ebeebesbeseeneeneeneenis 397
MAINTENANCE TOOLSueii ittt e et b b et b e b e e et be b e st e b e e e eneenes 398

7. SUPPOIT FEALUIES....ouiiiteestiertee sttt sttt et b e st e s ae e s ae e et e e nbe e sbee s ab e e nbeenbeesabeereenreenees 401
1L SO STRR 401
DHE P .t b e bbb Rt E bR e R e Rt R Rt Rt Re et R ettt et 401

38. TCP/IP LIDrary REFEIENCE.ccv ittt st e e e e re st e besee e eneenenns 403
Fo =300 (o] g aT= 1T g = U gV SR 403

Lo = H L0 1S = o= SRS 404

0] V4 LSTo] (0 [T SO TS ST P TSP PRPPTPRTPPRURRPTPON 405

L= LT £ SRSR 407

o L= = To [0 [T 01 {o KOTSRS 408
JETNOSTDYNAME ...t b bbbttt bbbt e enees 414

Lo L= ()= o [0 [£ TSSOSO PT TP STUT ST 417
JEINAIMEINTO. ...ttt h bt e b e bt e b bbb st bbb bt n bt e s s 418

[0 (=T o | VOO RPURUPRRUR 422
(o]0 0] (o1 0T=T o 1 TR UT U PTUPUPTRPRRO 423

Lo E]=110)Y7 4 E= 0 0= USRS PRRR 425
(oK1 V=T o OO U O RPTUPRRRTRPORO 427

1 ATz U a1 (T T T = 428

101 ST PP STRTURUR PRSP 429

(1o T=1 (G T o] o110] 0= Lo = 433

[T TS (O T gt Lo S = Lo = 437

1 1= S 1 440

03 PO PTPRRPRTIN 442

15T 0 = T [0 [443
1T T (o TS 444

LTS A= To [0 (o] o RS 445

0 PP R PR PRR 446
L1201V TSP RPRN 447

= Lo o1 o) S SRSR 450

o113 TSSO PSPPSR 452
(oT0] o] =T oF AT PPPRTPTPPPOPTRTR 453
JEIPEEIMAIME. ...t s a s b e e b s b e e s e e s n e r e e e e sn e 455
JEISOCKNAIME. ..ottt b e bbbt b e bbbt bbb bbbt eebenes 457

Lo =] Y0 Tt o OSSPSR 458

oo 1 SRS 462

10]| OSSP PP PPPORTRPTUPRPTPOON 463
L] T o S SRSRS 465
5= 1 o PP SRSRRRR 467

£y 1110 0 PSSR 470

£ Tod 1] O RTTSSRR 471
SOCKETDAIN. ...ttt ettt ettt bt b e b e bbb s e b e b e b e b e bR Rt e st e bt e bt e b e en s 473

XI. FreeBSD TCP/IP Stack POrt fOr @COS.....c.ciiiiiiieirere sttt sttt st se et b e e e e e 475
39. Networking StACK FEATUIES.......coi ittt e et b et e e s nas 477
40. FreebSd TCP/IP StACK POLL......ccueieeeeieieie ettt st e e sb e b e e e e eneenas 479
L= L0 =S PSPPSR 479
BUilding the NetWOIK SEACK........ccvciiieee et st 479
AN TSR 481
Standard NEIWOTIKING.......ccuiiiieeie e e e s re s e e e s te e e e sreeneeseesneenaesreeneenes 481

[] =T TeT=To BT =T ol TS 481

XIl. OpenBSD TCP/IP Stack POrt fOr C0S......uiiiiieieeee st seseeese s st te et s e e s s e sreseeneeneeneens 483
42. NetWOrking StACK FEATUMNES.....ccueiueeeeieteitestesieeee st st e e et estesa e s s sesae st e e e e e eseetesteseeseeneenennes 485
43. OpENBSD TCP/IP StACK POIL..iutiieieeiiieiiesiesieieis st ese et seesaesa s s st e e sae e seeresteseesaeneenenses 487
1= L0 1= £ SRPRSR 487
BUildiNg the NEtWOIK STACK........cciirese et ne e e 487

XiX

A, APIS.. e e e R e R e r e r e e r s nre e e 489

StaNdard NEIWOTKING........eiereeeeerere ettt e e e sessesbesteseeeeseesesaeseessenseneeneens 489

[g = U ot =T o Y= 1= T o (/PSR TR 489

XII1. DNS fOr €C0S and REUBOOL........c.cciviiiieetiiitee sttt steeeee e ebe e steesteesabeesbeessessasesbeebeesbessabesaseesbessnsesareerens 491
LT LN SRS 493
1NN SR O 493

XIV. EtNEINEL DEVICE DIIVEISvvi ettt ettt ettt stee e ee et e e steeeteesabe e sbeesbeesasesnbeebeesasesabesnbeesbessnsesarenntens 495
46. GENEriC EtNEINEt DEVICE DIIVAL.......ciiviecieeciee ittt et steesteeeteesteestesreesbeestaesasesbeesbeesssesnbessseesseesaneens 497
GENEIIC ETNEIMEE AP ...ttt ettt et b e s e e ae e be e sbeesasesabeesbeesaeesaneens 497
REVIEW Of the FUNCLIONS........eeeie ettt ettt et e sae e sabe e ebeesaeesaneens 499

L1 10 T 10 o RSSO 499

] T {0] 10 o SRS 500

(0 oI 18] o 1o SR 500

CONIOL FUNCLION.......ecuieitecieciecte ettt et st be st e e e e besreesbesbeebesbeessenbesaeensesaeennens 501

CaN=-SENA FUNCLION......coiitieticte ettt et st st e et e saeesbesbeebesbeessebesaeessesaeennens 502

SENA FUNCHION. ...ttt ettt e ste s et e st e eaeesbesaeestesbeesbesbeessenbesaeesesaeennens 502

DEIIVET FUNCLION......ceiiticeectecteeeete ettt ettt et st beebe b e ebeeaeesresaeebesbeeaeanbesaeennas 503

RECEIVE TUNCHION. ..ottt e et st e b e et e e beeaeesbesaeesbesbeeaeebeeanennas 503

Lo | I8 (U aTox 1o o F OO ORR SRR 504
INErTUPL-VECTOT fUNCHION. ...ttt 504

UPPEr LAYET FUNCLOMNS ...ttt st sttt et e 504
(OF= 111 o T= 11 18 [T 0T [0 1 Y o 505

(OF=11] o F= 1ot 1 G B To T a = {81 Tox 1o Y a 505

(OF=11] o F= 1o1 S Ra=Tot =AY U od £ o a 505

Calling graph for Transmission and RECEPLOMN...........cirreririiririeeree e 505

L 1T 41T o RO 505

RECEIVE. ...ttt ettt ettt e et e et e st e et e et e e sbeeeaeeeabeesbeeeseesateesbeseseesateesbessseesnseenrens 506

DS S NNV = TSR 509
A7. SNIMP fOFECOS....ec et ceteeetee ettt e e et e e te e s teeeteesbeesbessabesseeabessaeeesseebeesaessssesnbeesbeesseesnteeaseesseesaseens 511
YL £ (0] o RS R 511
SNMP packages in theCOSSOUICE FEPOSITONY.....ccueiuerieerierierierteeeeeere et sae e e e e e e 511
1= U o] o o] £ =T o SRR PR PSR 511
ChanNQES 10 ECOS SOUICES. .. ccueeuerterierterteteierie sttt tesee st et sbesbesaeseaseseeaeeaesbesbesbeseeneesesbesbesbensenseneeaeens 512
Starting the SNIMP AQEIL........oo et se e st st e e e re e e saesaeetesreeneenes 512
(0] o iTo U]] o =1 O 0 1S 513
VErsion USAQE (V1, V2 OF V3)...iiiceecieceeeteste e steseeste st ete e eseessesaeesaestessaessessaessessesneessesneensens 513

L= 0L 7SS YRR 514
SNMPA.CONT FIlB ..t s e s s be e s reesbeesabe e reesaeesaneens 514

LIS = 1SS 515
SNMP clients and PACKAGE USE.......ccceeueiueererestesiesieseeeees e steseetesasses e srestesseseessesessessessessensessnsenns 516
@10 a] 0] (=T g a =T 0] (= T0 R (Y= LN SR 516

Y112 30 o] o 1= SRR 517

£ 0 0] o eTo 1 | SRS 518

D VA = a o T=To [0 [<To I g W I I S Y= AV SRR 527

NI g gl o= To (o [=To N o I I ST =T =Y PSSR 529
L0 0T 1o] o PSR 529
SEIVEN OFJANIZATION. .. .cveuieetireetereet ettt ettt e b ettt b et b s e e s e sbebeseeb e se et e se e b et ebe e snenesnenenea 529
SErVEr CONTIGUIATION.......cuiieetireetere ettt ettt b e e b se et se bt b e sresesnene e 530

CYGNUM_HTTPD_SERVER_PQORT.....ccctrtstitrtirerteessesessesessesessesessssesssesssssssssessssesessesessesessesenes 530
CYGDAT_HTTPD_SERVER _ID.....citctiitetiietiisiesestesesaeseseesesaesesassessssessssassssssssssssssssessesessesessesenes 530
CYGNUM_HTTPD_THREAD_COUNT.c.ctttetiirtisisteseseeseseeseseesessssessssesessesessssesssssssssessesessesessesenes 530
CYGNUM_HTTPD_THREAD_PRIORITY....ctitittiiteesieerieseseesesessessssenesseessssessesessesessesessesessesenes 530
CYGNUM_HTTPD_THREAD_STACK_SIZE......iititterieerietirieiesiesesessenesseessesessesessssessesessesessesenes 530
CYGNUM_HTTPD_SERVER_BUFFER_SIZEccectvttrietirietisentesesieeseesssessssessssessesessesessssenes 531
CYGNUM_HTTPD_SERVER_DELAY....ceittttrtrtetrterereeseseeseseesesessessssesssesessesessssessssessesessesessesenes 531
STU] o] o o) w il W] o ox 1o] g Fo3R= U o IN1Y, = od o 531
L LI I S U o] o Lo APPSR 531
LT a1 = Ul o I Y S T o] oo o PRSP 532
L=] (SIS o oL SRS 532

014 4SS U] o] oL] ¢ FH SRR PRR 532
Predefined HaNUIBIS.......c.oieee et 533
SYSEEM IMONITOL. ...ttt st ettt ettt se st bt seebese et e se et et et et sbenesteneneeneneas 534
XVII. FTP Client for @C0S TCP/IP STACKcccciriiiiirieiriee ettt st st sae s 535

R T e I O 11T o Y= L] ST 537

FTP CHENE AP ettt et sttt sttt e e b e ae s aeebesbeeaa e beebeenbesbeeneesaesaeenbesbeensenbesaeennas 537

11 0 1= AT PR 537

11 O o 11 SRS 537

FEPCIENE PN ... 537

Do QY4 1L B @ = @ [[0 11 1 0 SR 539

LT O @ T o 1 o] o= PUS 541

CREC AP .ttt ettt st et s a et s et e se et e st et et et ese et e se e e es e eaeReee e b e neebe e be e e te st arenenaene e 541
CYO_POSIX_CITB2....etiuiteuireeteseetese st ebee b st es s s se e st se bt seeb e eb e e a e e b e e s b e st s es e seeb e b eb e b eb e e enenes 541

[0 o T o] (o1 12UV PURPRTRN 541

(oY =1 =T o 2 72N 541

[0 Yo I o] (o}t K T TP PP UPTURPRRRIN 541

XIX. CPU 1080 MEASUIEIMENTS.....ccuiitiiteeeeeiietiste sttt sttt st see et eaesbesae b e s e e et e st sbesbesbesee e eseebesbeseeseanseneeneens 543

51. CPU LOAA MEASUIEIMENLS......coueiuiititerieieeieetietesiestesteee et ssesbesbeseese et esesbesaesae s ense e et ebesbesbeseeneeneesesns 545

CPU LOAA AP ...ttt sttt sttt st et st e se st ebesaebese et e seebeseebe st ebeneasesessesenens 545

(oo I o3 0 18] (o= Yo I o%= 11T o] = /=SSN 545

LYo I o3 010] (o= Yo H o] £=T = S 545

LYo I o3 0181 (o= To IR0 [=1 1= 1 = USRS 545

(oY o3 01U (o To [N o =1 ST 546

IMplementation detailS.........ccocoeeecece e e e enea 546

Do O G AY o] o] o= L1 T a 18 o) 11 11 s o 547

52. ProfiliNg fUNCHONS.c.eiiiiiieterete ettt st s b e s b ettt st e st st ebe e 549
N e 549

(ST oY 111 o o TSSO P ST RTORRPITRITROTPN 549

XXi

XXil

XXI. eCos Power ManagemeENt SUPPOIL......ccuiiirirreieeeieres s s s e sr e se e ese s sre s e e eseene 551

10T 1T 1o T o SRS 553
Power Management INFOrMALION...........coieiiiiie e et 557
Changing POWET IMOUES........ccucuirieiirieterieieseet ettt sttt sttt e bt se bt e b se b e ne et et be e b enesnebe e 561
SUPPOTIt FOr PONICY MOTUIES........oeceiiciereteet sttt ene e 563
Attached and Detached CONIOIBLS. ..ottt e e 567
Implementing @ POWET CONLIOIIBE........c.oiiieee et bbb s 569
XX €@C0S USB SIAVE SUPPOI...etiitiiteieeieeieetiete sttt ettt sttt e e s be b b e se e et e st sbesbesbesee e eseebesbeseeseanseneeneane 573
Ta Lo o [T ex i o] o WO USROS 575
USB ENUMETAtION DALA.......ueiiieiieieiieie ittt s e sttt be b b e s et s b sb et e eeneeneenea 579
StArtiNng UP @ USB DEVICE......cuuiii ettt ettt et s ae et s re s et e s ta et e saeennesaesneetesrenneenes 585
DEVEAD ENLIIES ...ttt b et et b e bt b e b e e et eb e e b e s b e seese e e et e st ebesb et e beneennenea 587
Receiving Data from the HOSL.......cc.i ot sttt e 591
ST=T o [TaTo = 1= T (o i =N o [0 1= 595
[B2 LT I =t T | o0}]) TSRS 597
(@0 a1t o] I =g T [o1 £ 599
[z L= BT o1 1] £ TSRS 605
WIHtING @ USB DEVICE DIIVEL.....cueiieeeeeetesieitisieeee e se s e tesaesaeseesessessesaesesaeessessestessessensesessessessessensenesnenns 607
1= 1o ST 613
XXIIl. eCos Support for Developing USB-ethernet Peripherals.........ccoovvvereeeceeisiesieseseeeeese e 625
10T [T 1o T SR 627
Initializing the USB-ethernet PACKAGE ...t 629
USB-ethernet Data TranNSTEIS........cciviiiiieeee ettt e e et esaeneeneenens 631
USB-ethernet State HaNAING........coeoiieiriere et 633
Network Device for the @C0S TCP/IP STACK.......c.cciiiiiieeirt st enens 635
EXample HOSt-Side DEVICE DIIVEL......ccciiieirieiireeie sttt sttt sttt st sb e 637
CoMMUNICALION PTOTOCOL.... .ottt sttt et ae st st se e e e e eneens 639
XXIV. €CO0S SYNTNELIC TAIGEL.....ccueeuirtirteieeieeieterte ettt ettt st it ae et e e e e e aeebesbeseese e e eneebesbeseeseeneenenneens 641
L@ YT V1 AU 643
1S3 = 1| F= A o] o DTSSR 647
Running a Synthetic Target APPHCAtIQN..........coiiriiire e st 649
The 1/O AUXIlIAry’S USEr INTEITACE ..o b et e e enas 655
THE CONSOIE DEVICE.......cueieiriiiteeee ettt ettt ettt b e b e s et h e bt s bt b et e e et e ae b e e beseese e e eneenas 661
YY1 (] £ O 1| L3OOV PU PR 663
WItING NEW DEVICES = TAITEL.eeeeieeiiterie ettt ettt s b e b e et ae b b se e e e 665
WIHtING NEW DEVICES = NOSL....cuiiiieiciiitiiie ettt sttt e e 671
[0 1] 0o OSSPSR URPUSRRRRON 681
XXV, SALLX0 USB DEVICE DIIVET....cueiieuirietirieteisteisteesieiesieteseetesestesestesesteessesessesesaesesessesessesessenessenessesessesesens 685
SALLXO USB DEVICE DIIVEL.....cuirietireetirieieisieesietsteie et st st st ste st te e stesesaeseseebeseebeseebesesbenessenessesessesesens 687
XXVI. NEC UPD985XX USB DEVICE DIIVEN........coiieiiiiiiiicicicciciene s 691
NEC UPDO985XX USB DEVICE DIIVEL.....cciiirieeeieeeeiesiesieseeseesessesseseessesseseesesssssessessssssssssessessessessessessesessens 693
XXVII. Synthetic Target EtNEINEt DIIVEL ..ottt st seebe e 697
Synthetic Target EtNEINEt DIIVEL.......coo ettt 699
XXVIII. Synthetic Target WatChdog DEVICEcciiiiriiirieerieereetesesees et 705
Synthetic Target WatChdog DEVICE.c.couiiiiieirieerieiereete ettt 707

List of Tables

13-1. Behavior of math exception NandliNg........ccceoeeeiiiiireeee e a e 253

List of Examples

1-1. Sample DHCP configuration file

1-2. Sampléeetc/named.conf fOr R HAt LINUX 7.X..ccuiieiieieeeentesie ettt e 8

XXili

XXiV

|. The eCos Kernel

Kernel Overview

Name
Kernel — Overview of the eCos Kernel
Description

The kernel is one of the key packages in all of eCos. It provides the core functionality needed for developing
multi-threaded applications:

1. The ability to create new threads in the system, either during startup or when the system is already running.
2. Control over the various threads in the system, for example manipulating their priorities.

3. A choice of schedulers, determining which thread should currently be running.

4. A range of synchronization primitives, allowing threads to interact and share data safely.

5. Integration with the system’s support for interrupts and exceptions.

In some other operating systems the kernel provides additional functionality. For example the kernel may also
provide memory allocation functionality, and device drivers may be part of the kernel as well. This is not the case
for eCos. Memory allocation is handled by a separate package. Similary each device driver will typically be a
separate package. Various packages are combined and configured using the eCos configuration technology to meet
the requirements of the application.

The eCos kernel package is optional. It is possible to write single-threaded applications which do not use any kernel
functionality, for example RedBoot. Typically such applications are based around a central polling loop, continually
checking all devices and taking appropriate action when 1/O occurs. A small amount of calculation is possible every
iteration, at the cost of an increased delay between an I/O event occurring and the polling loop detecting the event.
When the requirements are straightforward it may well be easier to develop the application using a polling loop,
avoiding the complexities of multiple threads and synchronization between threads. As requirements get more
complicated a multi-threaded solution becomes more appropriate, requiring the use of the kernel. In fact some of
the more advanced packages in eCos, for example the TCP/IP stack, use multi-threading internally. Therefore if
the application uses any of those packages then the kernel becomes a required package, not an optional one.

The kernel functionality can be used in one of two ways. The kernel provides its own C API, with functions like
cyg_thread_create andcyg _mutex_lock . These can be called directly from application code or from other
packages. Alternatively there are a number of packages which provide compatibility with existing API's, for exam-
ple POSIX threads qeITRON. These allow application code to call standard functions suptha&sad_create

and those functions are implemented using the basic functionality provided by the eCos kernel. Using compatibility
packages in an eCos application can make it much easier to reuse code developed in other environments, and to
share code.

Although the different compatibility packages have similar requirements on the underlying kernel, for example the
ability to create a new thread, there are differences in the exact semantics. For exampld TR compliance
requires that kernel timeslicing is disabled. This is achieved largely through the configuration technology. The
kernel provides a number of configuration options that control the exact semantics that are provided, and the
various compatibility packages require particular settings for those options. This has two important consequences.
First, it is not usually possible to have two different compatibility packages in one eCos configuration because they
will have conflicting requirements on the underlying kernel. Second, the semantics of the kernel’'s own APl are only

27

Kernel Overview

28

loosely defined because of the many configuration options. For exagtpl@utex_lock will always attempt to
lock a mutex, but various configuration options determine the behaviour when the mutex is already locked and
there is a possibility of priority inversion.

The optional nature of the kernel package presents some complications for other code, especially device drivers.
Wherever possible a device driver should work whether or not the kernel is present. However there are some
parts of the system, especially those related to interrupt handling, which should be implemented differently
in multi-threaded environments containing the eCos kernel and in single-threaded environments without the
kernel. To cope with both scenarios the common HAL package provides a driver API, with functions such as
cyg_drv_interrupt_attach . When the kernel package is present these driver API functions map directly on to
the equivalent kernel functions suchagg_interrupt_attach , using macros to avoid any overheads. When the
kernel is absent the common HAL package implements the driver API directly, but this implementation is simpler
than the one in the kernel because it can assume a single-threaded environment.

Schedulers

When a system involves multiple threads, a scheduler is needed to determine which thread should currently be
running. The eCos kernel can be configured with one of two schedulers, the bitmap scheduler and the multi-level
queue (MLQ) scheduler. The bitmap scheduler is somewhat more efficient, but has a number of limitations. Most
systems will instead use the MLQ scheduler. Other schedulers may be added in the future, either as extensions to
the kernel package or in separate packages.

Both the bitmap and the MLQ scheduler use a simple numerical priority to determine which thread should be
running. The number of priority levels is configurable via the optit&GNUM_KERNEL_SCHED_PRIORITIEBut

a typical system will have up to 32 priority levels. Therefore thread priorities will be in the range 0 to 31, with 0
being the highest priority and 31 the lowest. Usually only the system’s idle thread will run at the lowest priority.
Thread priorities are absolute, so the kernel will only run a lower-priority thread if all higher-priority threads are
currently blocked.

The bitmap scheduler only allows one thread per priority level, so if the system is configured with 32 priority levels
then it is limited to only 32 threads — still enough for many applications. A simple bitmap can be used to keep
track of which threads are currently runnable. Bitmaps can also be used to keep track of threads waiting on a mutex
or other synchronization primitive. Identifying the highest-priority runnable or waiting thread involves a simple
operation on the bitmap, and an array index operation can then be used to get hold of the thread data structure
itself. This makes the bitmap scheduler fast and totally deterministic.

The MLQ scheduler allows multiple threads to run at the same priority. This means that there is no limit on the
number of threads in the system, other than the amount of memory available. However operations such as finding
the highest priority runnable thread are a little bit more expensive than for the bitmap scheduler.

Optionally the MLQ scheduler supports timeslicing, where the scheduler automatically switches from one runnable
thread to another when some number of clock ticks have occurred. Timeslicing only comes into play when there
are two runnable threads at the same priority and no higher priority runnable threads. If timeslicing is disabled
then a thread will not be preempted by another thread of the same priority, and will continue running until either it
explicitly yields the processor or until it blocks by, for example, waiting on a synchronization primitive. The con-
figuration option<CYGSEM_KERNEL_SCHED_TIMESLIGRACYGNUM_KERNEL_SCHED_TIMESLICE_TICK®ntrol
timeslicing. The bitmap scheduler does not provide timeslicing support. It only allows one thread per priority level,
so it is not possible to preempt the current thread in favour of another one with the same priority.

Another important configuration option that affects the MLQ scheduler igY-
GIMP_KERNEL_SCHED_SORTED_QUEUERIs determines what happens when a thread blocks, for example by

Kernel Overview

waiting on a semaphore which has no pending events. The default behaviour of the system is last-in-first-out
queuing. For example if several threads are waiting on a semaphore and an event is posted, the thread that gets
woken up is the last one that callegy_semaphore_wait . This allows for a simple and fast implementation of

both the queue and dequeue operations. However if there are several queued threads with different priorities, it
may not be the highest priority one that gets woken up. In practice this is rarely a problem: usually there will be at
most one thread waiting on a queue, or when there are several threads they will be of the same priority. However

if the application does require strict priority queueing then the optiéGIMP_KERNEL_SCHED_SORTED_QUEUES

should be enabled. There are disadvantages: more work is needed whenever a thread is queued, and the scheduler
needs to be locked for this operation so the system’s dispatch latency is worse. If the bitmap scheduler is used
then priority queueing is automatic and does not involve any penalties.

Some kernel functionality is currently only supported with the MLQ scheduler, not the bitmap scheduler. This
includes support for SMP systems, and protection against priority inversion using either mutex priority ceilings or
priority inheritance.

Synchronization Primitives

The eCos kernel provides a number of different synchronization primitiwatexescondition variablescounting
semaphoresnail boxesandevent flags

Mutexes serve a very different purpose from the other primitives. A mutex allows multiple threads to share a
resource safely: a thread locks a mutex, manipulates the shared resource, and then unlocks the mutex again. The
other primitives are used to communicate information between threads, or alternatively from a DSR associated
with an interrupt handler to a thread.

When a thread that has locked a mutex needs to wait for some condition to become true, it should use a condition
variable. A condition variable is essentially just a place for a thread to wait, and which another thread, or DSR, can
use to wake it up. When a thread waits on a condition variable it releases the mutex before waiting, and when it
wakes up it reacquires it before proceeding. These operations are atomic so that synchronization race conditions
cannot be introduced.

A counting semaphore is used to indicate that a particular event has occurred. A consumer thread can wait for this
event to occur, and a producer thread or a DSR can post the event. There is a count associated with the semaphore
so if the event occurs multiple times in quick succession this information is not lost, and the appropriate number of
semaphore wait operations will succeed.

Mail boxes are also used to indicate that a particular event has occurred, and allows for one item of data to be
exchanged per event. Typically this item of data would be a pointer to some data structure. Because of the need to
store this extra data, mail boxes have a finite capacity. If a producer thread generates mail box events faster than
they can be consumed then, to avoid overflow, it will be blocked until space is again available in the mail box. This
means that mail boxes usually cannot be used by a DSR to wake up a thread. Instead mail boxes are typically only
used between threads.

Event flags can be used to wait on some number of different events, and to signal that one or several of these
events have occurred. This is achieved by associating bits in a bit mask with the different events. Unlike a counting
semaphore no attempt is made to keep track of the number of events that have occurred, only the fact that an event
has occurred at least once. Unlike a mail box it is not possible to send additional data with the event, but this does
mean that there is no possibility of an overflow and hence event flags can be used between a DSR and a thread as
well as between threads.

29

Kernel Overview

30

The eCos common HAL package provides its own device driver APl which contains some of the above synchro-
nization primitives. These allow the DSR for an interrupt handler to signal events to higher-level code. If the

configuration includes the eCos kernel package then the driver API routines map directly on to the equivalent
kernel routines, allowing interrupt handlers to interact with threads. If the kernel package is not included and the
application consists of just a single thread running in polled mode then the driver API is implemented entirely

within the common HAL, and with no need to worry about multiple threads the implementation can obviously be

rather simpler.

Threads and Interrupt Handling

During normal operation the processor will be running one of the threads in the system. This may be an application
thread, a system thread running inside say the TCP/IP stack, or the idle thread. From time to time a hardware
interrupt will occur, causing control to be transferred briefly to an interrupt handler. When the interrupt has been
completed the system'’s scheduler will decide whether to return control to the interrupted thread or to some other
runnable thread.

Threads and interrupt handlers must be able to interact. If a thread is waiting for some 1/O operation to complete,
the interrupt handler associated with that I/O must be able to inform the thread that the operation has completed.
This can be achieved in a number of ways. One very simple approach is for the interrupt handler to set a volatile
variable. A thread can then poll continuously until this flag is set, possibly sleeping for a clock tick in between.
Polling continuously means that the cpu time is not available for other activities, which may be acceptable for some
but not all applications. Polling once every clock tick imposes much less overhead, but means that the thread may
not detect that the 1/0 event has occurred until an entire clock tick has elapsed. In typical systems this could be as
long as 10 milliseconds. Such a delay might be acceptable for some applications, but not all.

A better solution would be to use one of the synchronization primitives. The interrupt handler could signal a
condition variable, post to a semaphore, or use one of the other primitives. The thread would perform a wait
operation on the same primitive. It would not consume any cpu cycles until the 1/0 event had occurred, and when
the event does occur the thread can start running again immediately (subject to any higher priority threads that
might also be runnable).

Synchronization primitives constitute shared data, so care must be taken to avoid problems with concurrent access.
If the thread that was interrupted was just performing some calculations then the interrupt handler could manipulate
the synchronization primitive quite safely. However if the interrupted thread happened to be inside some kernel call
then there is a real possibility that some kernel data structure will be corrupted.

One way of avoiding such problems would be for the kernel functions to disable interrupts when executing any
critical region. On most architectures this would be simple to implement and very fast, but it would mean that
interrupts would be disabled often and for quite a long time. For some applications that might not matter, but many
embedded applications require that the interrupt handler run as soon as possible after the hardware interrupt has
occurred. If the kernel relied on disabling interrupts then it would not be able to support such applications.

Instead the kernel uses a two-level approach to interrupt handling. Associated with every interrupt vector is an
Interrupt Service Routine or ISR, which will run as quickly as possible so that it can service the hardware. However
an ISR can make only a small number of kernel calls, mostly related to the interrupt subsystem, and it cannot make
any call that would cause a thread to wake up. If an ISR detects that an I/O operation has completed and hence
that a thread should be woken up, it can cause the associated Deferred Service Routine or DSR to run. A DSR is
allowed to make more kernel calls, for example it can signal a condition variable or post to a semaphore.

Disabling interrupts prevents ISRs from running, but very few parts of the system disable interrupts and then only
for short periods of time. The main reason for a thread to disable interrupts is to manipulate some state that is

Kernel Overview

shared with an ISR. For example if a thread needs to add another buffer to a linked list of free buffers and the ISR
may remove a buffer from this list at any time, the thread would need to disable interrupts for the few instructions
needed to manipulate the list. If the hardware raises an interrupt at this time, it remains pending until interrupts are
reenabled.

Analogous to interrupts being disabled or enabled, the kernel has a scheduler lock. The various kernel functions
such asyg_mutex_lock andcyg_semaphore_post will claim the scheduler lock, manipulate the kernel data
structures, and then release the scheduler lock. If an interrupt results in a DSR being requested and the scheduler
is currently locked, the DSR remains pending. When the scheduler lock is released any pending DSRs will run.
These may post events to synchronization primitives, causing other higher priority threads to be woken up.

For an example, consider the following scenario. The system has a high priority thread A, responsible for processing
some data coming from an external device. This device will raise an interrupt when data is available. There are two
other threads B and C which spend their time performing calculations and occasionally writing results to a display

of some sort. This display is a shared resource so a mutex is used to control access.

At a particular moment in time thread A is likely to be blocked, waiting on a semaphore or another synchronization
primitive until data is available. Thread B might be running performing some calculations, and thread C is runnable
waiting for its next timeslice. Interrupts are enabled, and the scheduler is unlocked because none of the threads are
in the middle of a kernel operation. At this point the device raises an interrupt. The hardware transfers control
to a low-level interrupt handler provided by eCos which works out exactly which interrupt occurs, and then the
corresponding ISR is run. This ISR manipulates the hardware as appropriate, determines that there is now data
available, and wants to wake up thread A by posting to the semaphore. However ISR’s are not allowed to call
cyg_semaphore_post directly, so instead the ISR requests that its associated DSR be run and returns. There are
no more interrupts to be processed, so the kernel next checks for DSR’s. One DSR is pending and the scheduler is
currently unlocked, so the DSR can run immediately and post the semaphore. This will have the effect of making
thread A runnable again, so the scheduler’s data structures are adjusted accordingly. When the DSR returns thread
B is no longer the highest priority runnable thread so it will be suspended, and instead thread A gains control over
the cpu.

In the above example no kernel data structures were being manipulated at the exact moment that the interrupt
happened. However that cannot be assumed. Suppose that thread B had finished its current set of calculations and
wanted to write the results to the display. It would claim the appropriate mutex and manipulate the display. Now
suppose that thread B was timesliced in favour of thread C, and that thread C also finished its calculations and
wanted to write the results to the display. It would agij_mutex_lock . This kernel call locks the scheduler,
examines the current state of the mutex, discovers that the mutex is already owned by another thread, suspends
the current thread, and switches control to another runnable thread. Another interrupt happens in the middle of
this cyg_mutex_lock call, causing the ISR to run immediately. The ISR decides that thread A should be woken

up so it requests that its DSR be run and returns back to the kernel. At this point there is a pending DSR, but the
scheduler is still locked by the call tyg_mutex_lock so the DSR cannot run immediately. Instead the call to
cyg_mutex_lock is allowed to continue, which at some point involves unlocking the scheduler. The pending DSR
can now run, safely post the semaphore, and thus wake up thread A.

If the ISR had calledtyg_semaphore_post directly rather than leaving it to a DSR, it is likely that there would

have been some sort of corruption of a kernel data structure. For example the kernel might have completely lost
track of one of the threads, and that thread would never have run again. The two-level approach to interrupt han-
dling, ISR’s and DSR’s, prevents such problems with no need to disable interrupts.

31

Kernel Overview

32

Calling Contexts

eCos defines a number of contexts. Only certain calls are allowed from inside each context, for example most
operations on threads or synchronization primitives are not allowed from ISR context. The different contexts are
initialization, thread, ISR and DSR.

When eCos starts up it goes through a number of phases, including setting up the hardware and invoking C++ static
constructors. During this time interrupts are disabled and the scheduler is locked. When a configuration includes
the kernel package the final operation is a catlyi@ scheduler_start . At this point interrupts are enabled, the
scheduler is unlocked, and control is transferred to the highest priority runnable thread. If the configuration also
includes the C library package then usually the C library startup package will have created a thread which will call
the application’snain entry point.

Some application code can also run before the scheduler is started, and this code runs in initialization context.
If the application is written partly or completely in C++ then the constructors for any static objects will be run.
Alternatively application code can define a functiony_user_start which gets called after any C++ static
constructors. This allows applications to be written entirely in C.

void
cyg_user_start(void)

{

[* Perform application-specific initialization here */

}

It is not necessary for applications to provideyg_user_start ~ function since the system will provide a default
implementation which does nothing.

Typical operations that are performed from inside static constructesganiser_start include creating threads,
synchronization primitives, setting up alarms, and registering application-specific interrupt handlers. In fact for
many applications all such creation operations happen at this time, using statically allocated data, avoiding any
need for dynamic memory allocation or other overheads.

Code running in initialization context runs with interrupts disabled and the scheduler locked. It is not permitted
to reenable interrupts or unlock the scheduler because the system is not guaranteed to be in a totally consis-
tent state at this point. A consequence is that initialization code cannot use synchronization primitives such as
cyg_semaphore_wait to wait for an external event. It is permitted to lock and unlock a mutex: there are no other
threads running so it is guaranteed that the mutex is not yet locked, and therefore the lock operation will never
block; this is useful when making library calls that may use a mutex internally.

At the end of the startup sequence the system will eall scheduler_start and the various threads will

start running. In thread context nearly all of the kernel functions are available. There may be some restrictions

on interrupt-related operations, depending on the target hardware. For example the hardware may require
that interrupts be acknowledged in the ISR or DSR before control returns to thread context, in which case

cyg_interrupt_acknowledge should not be called by a thread.

At any time the processor may receive an external interrupt, causing control to be transferred from the current
thread. Typically a VSR provided by eCos will run and determine exactly which interrupt occurred. Then the VSR
will switch to the appropriate ISR, which can be provided by a HAL package, a device driver, or by the application.
During this time the system is running at ISR context, and most of the kernel function calls are disallowed. This
includes the various synchronization primitives, so for example an ISR is not allowed to post to a semaphore to
indicate that an event has happened. Usually the only operations that should be performed from inside an ISR are

Kernel Overview

ones related to the interrupt subsystem itself, for example masking an interrupt or acknowledging that an interrupt
has been processed. On SMP systems it is also possible to use spinlocks from ISR context.

When an ISR returns it can request that the corresponding DSR be run as soon as it is safe to do so, and that
will run in DSR context. This context is also used for running alarm functions, and threads can switch temporar-
ily to DSR context by locking the scheduler. Only certain kernel functions can be called from DSR context, al-
though more than in ISR context. In particular it is possible to use any synchronization primitives which cannot
block. These includeyg_semaphore_post , cyg_cond_signal , cyg_cond_broadcast , cyg_flag_setbits ,
andcyg_mbox_tryput . It is not possible to use any primitives that may block sucleygssemaphore_wait
cyg_mutex_lock , orcyg_mbox_put . Calling such functions from inside a DSR may cause the system to hang.

The specific documentation for the various kernel functions gives more details about valid contexts.

Error Handling and Assertions

In many APIs each function is expected to perform some validation of its parameters and possibly of the current
state of the system. This is supposed to ensure that each function is used correctly, and that application code is not
attempting to perform a semaphore operation on a mutex or anything like that. If an error is detected then a suitable
error code is returned, for example the POSIX functittiread_mutex_lock can return various error codes
including EINVAL andEDEADLK There are a humber of problems with this approach, especially in the context of
deeply embedded systems:

1. Performing these checks inside the mutex lock and all the other functions requires extra cpu cycles and adds
significantly to the code size. Even if the application is written correctly and only makes system function calls
with sensible arguments and under the right conditions, these overheads still exist.

2. Returning an error code is only useful if the calling code detects these error codes and takes appropriate action.
In practice the calling code will often ignore any errors because the prograthnmers” that the function is
being used correctly. If the programmer is mistaken then an error condition may be detected and reported, but
the application continues running anyway and is likely to fail some time later in mysterious ways.

3. If the calling code does always check for error codes, that adds yet more cpu cycles and code size overhead.

4. Usually there will be no way to recover from certain errors, so if the application code detected an error such
asEINVAL then all it could do is abort the application somehow.

The approach taken within the eCos kernel is different. Functions sugh asutex_lock will not return an error

code. Instead they contain various assertions, which can be enabled or disabled. During the development process
assertions are normally left enabled, and the various kernel functions will perform parameter checks and other
system consistency checks. If a problem is detected then an assertion failure will be reported and the application
will be terminated. In a typical debug session a suitable breakpoint will have been installed and the developer can
now examine the state of the system and work out exactly what is going on. Towards the end of the development
cycle assertions will be disabled by manipulating configuration options within the eCos infrastructure package, and
all assertions will be eliminated at compile-time. The assumption is that by this time the application code has been
mostly debugged: the initial version of the code might have tried to perform a semaphore operation on a mutex, but
any problems like that will have been fixed some time ago. This approach has a number of advantages:

1. In the final application there will be no overheads for checking parameters and other conditions. All that code
will have been eliminated at compile-time.

33

Kernel Overview

34

2. Because the final application will not suffer any overheads, it is reasonable for the system to do more work
during the development process. In particular the various assertions can test for more error conditions and
more complicated errors. When an error is detected it is possible to give a text message describing the error
rather than just return an error code.

3. There is no need for application programmers to handle error codes returned by various kernel function calls.
This simplifies the application code.

4.1f an error is detected then an assertion failure will be reported immediately and the application will be halted.
There is no possibility of an error condition being ignored because application code did not check for an error
code.

Although none of the kernel functions return an error code, many of them do return a status condition. For example
the functioncyg_semaphore_timed_wait waits until either an event has been posted to a semaphore, or until a
certain number of clock ticks have occurred. Usually the calling code will need to know whether the wait operation
succeeded or whether a timeout occuresd. semaphore_timed _wait returns a boolean: a return value of zero

or false indicates a timeout, a non-zero return value indicates that the wait succeeded.

In conventional APIs one common error conditions is lack of memory. For example the POSIX function
pthread_create usually has to allocate some memory dynamically for the thread stack and other per-thread
data. If the target hardware does not have enough memory to meet all demands, or more commonly if the
application contains a memory leak, then there may not be enough memory available and the function call would
fail. The eCos kernel avoids such problems by never performing any dynamic memory allocation. Instead it is the
responsibility of the application code to provide all the memory required for kernel data structures and other
needs. In the case ofg_thread_create this means a cyg_thread data structure to hold the thread details, and a
char array for the thread stack.

In many applications this approach results in all data structures being allocated statically rather than dynamically.
This has several advantages. If the application is in fact too large for the target hardware’s memory then there will
be an error at link-time rather than at run-time, making the problem much easier to diagnose. Static allocation
does not involve any of the usual overheads associated with dynamic allocation, for example there is no need to
keep track of the various free blocks in the system, and it may be possible to elimidmie from the system
completely. Problems such as fragmentation and memory leaks cannot occur if all data is allocated statically.
However, some applications are sufficiently complicated that dynamic memory allocation is required, and the
various kernel functions do not distinguish between statically and dynamically allocated memory. It still remains
the responsibility of the calling code to ensure that sufficient memory is available, and passing null pointers to the
kernel will result in assertions or system failure.

SMP Support

Name

SMP— Support Symmetric Multiprocessing Systems

Description

eCos contains support for limited Symmetric Multi-Processing (SMP). This is only available on selected architec-
tures and platforms. The implementation has a number of restrictions on the kind of hardware supported. These are
described irthe Section calle&MP Supporin Chapter 9

The following sections describe the changes that have been made to the eCos kernel to support SMP operation.

System Startup

The system startup sequence needs to be somewhat different on an SMP system, although this is largely transparent
to application code. The main startup takes place on only one CPU, called the primary CPU. All other CPUs, the
secondary CPUs, are either placed in suspended state at reset, or are captured by the HAL and put into a spin as
they start up. The primary CPU is responsible for copying the DATA segment and zeroing the BSS (if required),
calling HAL variant and platform initialization routines and invoking constructors. It theneajistart to enter

the application. The application may then create extra threads and other objects.

Itis only when the application caltsg_scheduler_start that the secondary CPUs are initialized. This routine
scans the list of available secondary CPUs and inveles SMP_CPU_STARID start each CPU. Finally it calls an
internal functionCyg_Scheduler::start_cpu to enter the scheduler for the primary CPU.

Each secondary CPU starts in the HAL, where it completes any per-CPU initialization before calling into the kernel
atcyg_kernel_cpu_startup . Here it claims the scheduler lock and catlgy_Scheduler::start_cpu

Cyg_Scheduler::start_cpu is common to both the primary and secondary CPUs. The first thing this code does
is to install an interrupt object for this CPU’s inter-CPU interrupt. From this point on the code is the same as for
the single CPU case: an initial thread is chosen and entered.

From this point on the CPUs are all equal, eCos makes no further distinction between the primary and secondary
CPUs. However, the hardware may still distinguish between them as far as interrupt delivery is concerned.

Scheduling

To function correctly an operating system kernel must protect its vital data structures, such as the run queues,
from concurrent access. In a single CPU system the only concurrent activities to worry about are asynchronous
interrupts. The kernel can easily guard its data structures against these by disabling interrupts. However, in a multi-
CPU system, this is inadequate since it does not block access by other CPUs.

The eCos kernel protects its vital data structures using the scheduler lock. In single CPU systems this is a simple
counter that is atomically incremented to acquire the lock and decremented to release it. If the lock is decremented
to zero then the scheduler may be invoked to choose a different thread to run. Because interrupts may continue to
be serviced while the scheduler lock is claimed, ISRs are not allowed to access kernel data structures, or call kernel

35

SMP Support

36

routines that can. Instead all such operations are deferred to an associated DSR routine that is run during the lock
release operation, when the data structures are in a consistent state.

By choosing a kernel locking mechanism that does not rely on interrupt manipulation to protect data structures,
it is easier to convert eCos to SMP than would otherwise be the case. The principal change needed to make eCos
SMP-safe is to convert the scheduler lock into a nestable spin lock. This is done by adding a spinlock and a CPU
id to the original counter.

The algorithm for acquiring the scheduler lock is very simple. If the scheduler lock’s CPU id matches the current
CPU then it can just increment the counter and continue. If it does not match, the CPU must spin on the spinlock,
after which it may increment the counter and store its own identity in the CPU id.

To release the lock, the counter is decremented. If it goes to zero the CPU id value must be set to NONE and the
spinlock cleared.

To protect these sequences against interrupts, they must be performed with interrupts disabled. However, since
these are very short code sequences, they will not have an adverse effect on the interrupt latency.

Beyond converting the scheduler lock, further preparing the kernel for SMP is a relatively minor matter. The main
changes are to convert various scalar housekeeping variables into arrays indexed by CPU id. These include the
current thread pointer, the need_reschedule flag and the timeslice counter.

At present only the Multi-Level Queue (MLQ) scheduler is capable of supporting SMP configurations. The main
change made to this scheduler is to cope with having several threads in execution at the same time. Running threads
are marked with the CPU that they are executing on. When scheduling a thread, the scheduler skips past any running
threads until it finds a thread that is pending. While not a constant-time algorithm, as in the single CPU case, this
is still deterministic, since the worst case time is bounded by the number of CPUs in the system.

A second change to the scheduler is in the code used to decide when the scheduler should be called to choose a
new thread. The scheduler attempts to keep the n CPUs running the n highest priority threads. Since an event or
interrupt on one CPU may require a reschedule on another CPU, there must be a mechanism for deciding this. The
algorithm currently implemented is very simple. Given a thread that has just been awakened (or had its priority
changed), the scheduler scans the CPUs, starting with the one it is currently running on, for a current thread that
is of lower priority than the new one. If one is found then a reschedule interrupt is sent to that CPU and the scan
continues, but now using the current thread of the rescheduled CPU as the candidate thread. In this way the new
thread gets to run as quickly as possible, hopefully on the current CPU, and the remaining CPUs will pick up the
remaining highest priority threads as a consequence of processing the reschedule interrupt.

The final change to the scheduler is in the handling of timeslicing. Only one CPU receives timer interrupts, although
all CPUs must handle timeslicing. To make this work, the CPU that receives the timer interrupt decrements the
timeslice counter for all CPUs, not just its own. If the counter for a CPU reaches zero, then it sends a timeslice
interrupt to that CPU. On receiving the interrupt the destination CPU enters the scheduler and looks for another
thread at the same priority to run. This is somewhat more efficient than distributing clock ticks to all CPUs, since

the interrupt is only needed when a timeslice occurs.

All existing synchronization mechanisms work as before in an SMP system. Additional synchronization mecha-
nisms have been added to provide explicit synchronization for SMP, in the fospirdbcks

SMP Interrupt Handling

The main area where the SMP nature of a system requires special attention is in device drivers and especially
interrupt handling. It is quite possible for the ISR, DSR and thread components of a device driver to execute on
different CPUs. For this reason it is much more important that SMP-capable device drivers use the interrupt-related

SMP Support

functions correctly. Typically a device driver would use the driver API rather than call the kernel directly, but it is
unlikely that anybody would attempt to use a multiprocessor system without the kernel package.

Two new functions have been added to the Kernel API tanderrupt routing cyg_interrupt_set_cpu and
cyg_interrupt_get_cpu . Although not currently supported, special values for the cpu argument may be used in
future to indicate that the interrupt is being routed dynamically or is CPU-local. Once a vector has been routed to
a new CPU, all other interrupt masking and configuration operations are relative to that CPU, where relevant.

There are more details of how interrupts should be handled in SMP systehes$®ction calleMP Supporin
Chapter 18

37

SMP Support

38

Thread creation

Name

cyg_thread_create — Create a new thread

Synopsis

#include <cyg/kernel/kapi.h >

void cyg_thread_create (cyg_addrword_t sched_info , cyg_thread_entry t* entry

cyg_addrword_t entry data , char* name, void* stack base , cyg_ucount32 stack size
cyg_handle_t* handle , cyg_thread* thread);

Description

The cyg_thread_create function allows application code and eCos packages to create new threads. In many
applications this only happens during system initialization and all required data is allocated statically. However
additional threads can be created at any time, if necessary. A newly created thread is always in suspended state
and will not start running until it has been resumed via a calytp thread_resume . Also, if threads are created

during system initialization then they will not start running until the eCos scheduler has been started.

The name argument is used primarily for debugging purposes, making it easier to keep track of which
cyg_thread structure is associated with which application-level thread. The kernel configuration option
CYGVAR_KERNEL_THREADS_NAsgmtrols whether or not this name is actually used.

On creation each thread is assigned a unique handle, and this will be stored in the location pointed at by the
handle argument. Subsequent operations on this thread including the requirebread_resume should use
this handle to identify the thread.

The kernel requires a small amount of space for each thread, in the form of a cyg_thread data structure, to hold
information such as the current state of that thread. To avoid any need for dynamic memory allocation within the
kernel this space has to be provided by higher-level code, typically in the form of a static variabtbr&dc

argument provides this space.

Thread Entry Point

The entry point for a thread takes the form:
void
thread_entry_function(cyg_addrword_t data)

{
}

39

Thread creation

40

The second argument tyg_thread_create is a pointer to such a function. The third argumentry _data
is used to pass additional data to the function. Typically this takes the form of a pointer to some static data, or a
small integer, oo if the thread does not require any additional data.

If the thread entry function ever returns then this is equivalent to the thread ceflinthread_exit . Even
though the thread will no longer run again, it remains registered with the scheduler. If the application needs to
re-use the cyg_thread data structure then a calldothread_delete is required first.

Thread Priorities

Thesched_info argument provides additional information to the scheduler. The exact details depend on the
scheduler being used. For the bitmap and miqueue schedulers it is a small integer, typically in the range 0 to 31,
with O being the highest priority. The lowest priority is normally used only by the system’s idle thread. The exact
number of priorities is controlled by the kernel configuration optiMeNUM_KERNEL_SCHED_PRIORITIES

Itis the responsibility of the application developer to be aware of the various threads in the system, including those
created by eCos packages, and to ensure that all threads run at suitable priorities. For threads created by other
packages the documentation provided by those packages should indicate any requirements.

The functions cyg_thread_set_priority , cyg_thread_get_priority , and
cyg_thread_get_current_priority can be used to manipulate a thread’s priority.

Stacks and Stack Sizes

Each thread needs its own stack for local variables and to keep track of function calls and returns. Again it is
expected that this stack is provided by the calling code, usually in the form of static data, so that the kernel does not
need any dynamic memory allocation facilitiegg_thread_create takes two arguments related to the stack, a
pointer to the base of the stack and the total size of this stack. On many processors stacks actually descend from
the top down, so the kernel will add the stack size to the base address to determine the starting location.

The exact stack size requirements for any given thread depend on a number of factors. The most important is
of course the code that will be executed in the context of this code: if this involves significant nesting of
function calls, recursion, or large local arrays, then the stack size needs to be set to a suitably high value.
There are some architectural issues, for example the number of cpu registers and the calling conventions
will have some effect on stack usage. Also, depending on the configuration, it is possible that some other
code such as interrupt handlers will occasionally run on the current thread's stack. This depends in
part on configuration options such aSYGIMP_HAL_COMMON_INTERRUPTS_USE_INTERRUPT_STATK
CYGSEM_HAL_COMMON_INTERRUPTS_ALLOW_NESTING

Determining an application’s actual stack size requirements is the responsibility of the application developer,
since the kernel cannot know in advance what code a given thread will run. However, the system does provide
some hints about reasonable stack sizes in the form of two constaf@stUM_HAL_STACK_SIZE_MINIMU&Nd
CYGNUM_HAL_STACK_SIZE_TYPICALThese are defined by the appropriate HAL package.MIkeMUMvalue is
appropriate for a thread that just runs a single function and makes very simple system calls. Trying to create a
thread with a smaller stack than this is illegal. Ti¥PICAL value is appropriate for applications where application

calls are nested no more than half a dozen or so levels, and there are no large arrays on the stack.

If the stack sizes are not estimated correctly and a stack overflow occurs, the probably result is some form of
memory corruption. This can be very hard to track down. The kernel does contain some code to help detect stack
overflows, controlled by the configuration optiGiYGFUN_KERNEL_THREADS_STACK_CHECKIa&mall amount

Thread creation

of space is reserved at the stack limit and filled with a special signature: every time a thread context switch occurs
this signature is checked, and if invalid that is a good indication (but not absolute proof) that a stack overflow has

occurred. This form of stack checking is enabled by default when the system is built with debugging enabled. A

related configuration option BYGFUN_KERNEL_THREADS_STACK_MEASUREMENIDIling this option means that

a thread can call the functiayg_thread_measure_stack_usage to find out the maximum stack usage to date.

Note that this is not necessarily the true maximum because, for example, it is possible that in the current run no
interrupt occurred at the worst possible moment.

Valid contexts

cyg_thread_create may be called during initialization and from within thread context. It may not be called from
inside a DSR.

Example

A simple example of thread creation is shown below. This involves creating five threads, one producer and four
consumers or workers. The threads are created in the systgmiser_start : depending on the configuration
it might be more appropriate to do this elsewhere, for example imsite.

#include <cyg/hal/hal_arch.h >
#include <cyg/kernel/kapi.h >

/I These numbers depend entirely on your application

#define NUMBER_OF_WORKERS 4

#define PRODUCER_PRIORITY 10

#define WORKER_PRIORITY 11

#define PRODUCER_STACKSIZE CYGNUM_HAL_STACK_SIZE TYPICAL

#define WORKER_STACKSIZE (CYGNUM_HAL_STACK_SIZE_MINIMUM + 1024)

static unsigned char producer_stacklPRODUCER_STACKSIZE];

static unsigned char worker_stacksINUMBER_OF_WORKERS][WORKER_STACKSIZE];
static cyg_handle_t producer_handle, worker_handlesfINUMBER_OF_WORKERS];
static cyg_thread_t producer_thread, worker_threadsINUMBER_OF_WORKERS];

static void
producer(cyg_addrword_t data)
{

}

static void
worker(cyg_addrword_t data)

{
}

void
cyg_user_start(void)

{

int i;

41

Thread creation

42

cyg_thread_create(PRODUCER_PRIORITY, &producer, 0, "producer”,
producer_stack, PRODUCER_STACKSIZE,
&producer_handle, &producer_thread);
cyg_thread_resume(producer_handle);
for (i = 0; i < NUMBER_OF_WORKERS; i++) {
cyg_thread_create(WORKER_PRIORITY, &worker, i, "worker",
worker_stacks[i], WORKER_STACKSIZE,
&(worker_handles[i]), &(worker_threadsi]));
cyg_thread_resume(worker_handles]i]);

Thread Entry Points and C++

For code written in C++ the thread entry function must be either a static member function of a class or an ordinary
function outside any class. It cannot be a normal member function of a class because such member functions take
an implicit additional argumenhis , and the kernel has no way of knowing what value to use for this argument.
One way around this problem is to make use of a special static member function, for example:

class fred {
public:
void thread_function();
static void static_thread_aux(cyg_addrword_t);

h

void

fred::static_thread_aux(cyg_addrword_t objptr)

{
fred* object = static_cast <fred* >(objptr);
object- >thread_function();

}

static fred instance;

extern "C" void
cyg_start(void)

{
cyg_thread_create(...,
&fred::static_thread_aux,
static_cast <cyg_addrword_t >(&instance),
)
}

Effectively this uses thentry_data argument tayg_thread_create to hold thethis pointer. Unfortunately
this approach does require the use of some C++ casts, so some of the type safety that can be achieved when
programming in C++ is lost.

Thread information

Name

cyg_thread_self, cyg_thread_idle_thread, cyg thread get stack base,
cyg_thread_get stack_size, cyg_thread_measure_stack usage,

cyg_thread_get next, cyg_thread_get info, cyg_thread_find — Get basic thread
information

Synopsis

#include <cyg/kernel/kapi.h >

cyg_handle_t cyg_thread_self (void);

cyg_handle_t cyg_thread_idle_thread (void);

cyg_addrword_t cyg_thread_get_stack_base (cyg_handle_t thread);

cyg_uint32 cyg_thread_get_stack_size (cyg_handle_t thread);

cyg_uint32 cyg_thread_measure_stack _usage (cyg_handle_t thread);

cyg_bool cyg_thread_get next (cyg_handle_t * thread , cyg uintl6 * id);

cyg_bool cyg_thread_get_info (cyg_handle_t thread , cyg_uintl6 id , cyg_thread_info
*info);

cyg_handle_t cyg_thread_find (cyg_uint16 id);

Description

These functions can be used to obtain some basic information about various threads in the system. Typically they
serve little or no purpose in real applications, but they can be useful during debugging.

cyg_thread_self returns a handle corresponding to the current thread. It will be the same as the value filled in
by cyg_thread_create when the current thread was created. This handle can then be passed to other functions
such agyg_thread_get_priority

cyg_thread_idle_thread returns the handle corresponding to the idle thread. This thread is created automati-
cally by the kernel, so application-code has no other way of getting hold of this information.

cyg_thread_get_stack_base andcyg_thread_get_stack_size return information about a specific thread’s
stack. The values returned will match the values passeghtohread_create when this thread was created.

cyg_thread_measure_stack_usage is only available if the configuration option
CYGFUN_KERNEL_THREADS_STACK_MEASUREME@Tabled. The return value is the maximum number of bytes

of stack space used so far by the specified thread. Note that this should not be considered a true upper bound, for
example it is possible that in the current test run the specified thread has not yet been interrupted at the deepest
point in the function call graph. Never the less the value returned can give some useful indication of the thread’s
stack requirements.

cyg_thread_get_next is used to enumerate all the current threads in the system. It should be called initially with
the locations pointed to bhread andid set to zero. On return these will be set to the handle and ID of the first
thread. On subsequent calls, these parameters should be left set to the values returned by the previous call. The

43

Thread information

handle and ID of the next thread in the system will be installed each time, uatika return value indicates the
end of the list.

cyg_thread_get_info fills in the cyg_thread_info structure with information about the thread described by the
thread andid arguments. The information returned includes the thread’s handle and id, its state and name,
priorities and stack parameters. If the thread does not exist the function reeeens

The cyg_thread_info structure is defined as follows<tayg/kernel/kapi.h >, but may be extended in future
with additional members, and so its size should not be relied upon:

typedef struct

{
cyg_handle_t handle ;
cyg_uintl6 id ;
cyg_uint32 state
char *name;
cyg_priority_t set_pri
cyg_priority_t cur_pri
cyg_addrword_t stack_base
cyg_uint32 stack_size
cyg_uint32 stack_used

} cyg_thread_info;

cyg_thread_find returns a handle for the thread whose IDids. If no such thread exists, a zero handle is
returned.

Valid contexts

cyg_thread_self may only be called from thread contexig_thread_idle_thread may be called from
thread or DSR context, but only after the system has been initializggl.thread_get_stack_base ,
cyg_thread_get_stack_size and cyg_thread_measure_stack_usage may be called any time after the

specified thread has been created, but measuring stack usage involves looping over at least part of the thread’s
stack so this should normally only be done from thread context.

Examples
A simple example of the use of tlegg_thread_get_next andcyg_thread_get_info follows:
#include <cyg/kernel/kapi.h >

#include <stdio.h >

void show_threads(void)

{
cyg_handle_t thread = 0;

cyg_uintl6 id = 0;
while(cyg_thread_get_next(&thread, &id))
{

cyg_thread_info info;

44

Thread information

if(!cyg_thread_get_info(thread, id, &info))
break;

printf("ID: %04x name: %210s pri: %d\n",
info.id, info.name?info.name:"----", info.set_pri);

45

Thread information

46

Thread control

Name

cyg_thread_yield, cyg_thread_delay, cyg_thread_suspend, cyg_thread_resume,
cyg_thread_release — Control whether or not a thread is running

Synopsis

#include <cyg/kernel/kapi.h >

void cyg_thread_yield (void);

void cyg_thread_delay (cyg_tick_count_t delay);
void cyg_thread_suspend (cyg_handle_t thread);
void cyg_thread_resume (cyg_handle_t thread);
void cyg_thread_release (cyg_handle_t thread);

Description

These functions provide some control over whether or not a particular thread can run. Apart from the required use of
cyg_thread_resume to start a newly-created thread, application code should normally use proper synchronization
primitives such as condition variables or mail boxes.

Yield

cyg_thread_yield allows a thread to relinquish control of the processor to some other runnable thread which has
the same priority. This can have no effect on any higher-priority thread since, if such a thread were runnable, the
current thread would have been preempted in its favour. Similarly it can have no effect on any lower-priority thread
because the current thread will always be run in preference to those. As a consequence this function is only useful
in configurations with a scheduler that allows multiple threads to run at the same priority, for example the miqueue
scheduler. If instead the bitmap scheduler was being usedyhethread_yield() would serve no purpose.

Even if a suitable scheduler such as the miqueue scheduler has been configmniesad_yield will still

rarely prove useful: instead timeslicing will be used to ensure that all threads of a given priority get a fair slice
of the available processor time. However it is possible to disable timeslicing via the configuration option
CYGSEM_KERNEL_SCHED_TIMESLICE which casecyg_thread_yield can be used to implement a form of
cooperative multitasking.

Delay

cyg_thread_delay allows a thread to suspend until the specified number of clock ticks have occurred. For ex-
ample, if a value of 1 is used and the system clock runs at a frequency of 100Hz then the thread will sleep for up
to 10 milliseconds. This functionality depends on the presence of a real-time system clock, as controlled by the
configuration optiolCYGVAR_KERNEL_COUNTERS_CLOCK

47

Thread control

48

If the application requires delays measured in milliseconds or similar units rather than in clock ticks, some calcula-
tions are needed to convert between these units as descriBeatks Usually these calculations can be done by the
application developer, or at compile-time. Performing such calculations prior to every cgil toread_delay

adds unnecessary overhead to the system.

Suspend and Resume

Associated with each thread is a suspend counter. When a thread is first created this counter is initialized to 1.
cyg_thread_suspend can be used to increment the suspend countercgmndhread_resume decrements it.

The scheduler will never run a thread with a non-zero suspend counter. Therefore a newly created thread will not
run until it has been resumed.

An occasional problem with the use of suspend and resume functionality is that a thread gets suspended
more times than it is resumed and hence never becomes runnable again. This can lead to very
confusing behaviour. To help with debugging such problems the kernel provides a configuration option
CYGNUM_KERNEL_MAX_SUSPEND_COUNT_AS®Mich imposes an upper bound on the number of suspend calls
without matching resumes, with a reasonable default value. This functionality depends on infrastructure assertions
being enabled.

Releasing a Blocked Thread

When a thread is blocked on a synchronization primitive such as a semaphore or a mutex, or when it is waiting
for an alarm to trigger, it can be forcibly woken up usiog_thread_release . Typically this will call the

affected synchronization primitive to return false, indicating that the operation was not completed successfully.
This function has to be used with great care, and in particular it should only be used on threads that have been
designed appropriately and check all return codes. If instead it were to be used on, say, an arbitrary thread that is
attempting to claim a mutex then that thread might not bother to check the result of the mutex lock operation -
usually there would be no reason to do so. Therefore the thread will now continue running in the false belief that it
has successfully claimed a mutex lock, and the resulting behaviour is undefined. If the system has been built with
assertions enabled then it is possible that an assertion will trigger when the thread tries to release the mutex it does
not actually own.

The main use ofyg_thread_release is in the POSIX compatibility layer, where it is used in the implementation
of per-thread signals and cancellation handlers.

Valid contexts

cyg_thread_yield can only be called from thread context, A DSR must always run to completion and cannot
yield the processor to some threaglg_thread_suspend , cyg_thread_resume , andcyg_thread_release
may be called from thread or DSR context.

Thread termination

Name

cyg_thread_exit, cyg thread_Kill, cyg thread_delete — Allow threads to terminate
Synopsis

#include <cyg/kernel/kapi.h >

void cyg_thread_exit (void);
void cyg_thread Kkill (cyg_handle_t thread);
void cyg_thread delete (cyg_handle_t thread);

Description

In many embedded systems the various threads are allocated statically, created during initialization, and never
need to terminate. This avoids any need for dynamic memory allocation or other resource management facilities.
However if a given application does have a requirement that some threads be created dynamically, must terminate,
and their resources such as the stack be reclaimed, then the kernel provides the fupgtinsad exit
cyg_thread_kill , andcyg_thread_delete

cyg_thread_exit allows a thread to terminate itself, thus ensuring that it will not be run again by the scheduler.
However the cyg_thread data structure passegydothread_create remains in use, and the handle returned
by cyg_thread_create remains valid. This allows other threads to perform certain operations on the terminated
thread, for example to determine its stack usagewathread_measure_stack_usage . When the handle and
cyg_thread structure are no longer requirgd, thread_delete should be called to release these resources. If
the stack was dynamically allocated then this should not be freed until after the oall toread_delete

Alternatively, one thread may usgg_thread_kill on another This has much the same effect as the affected
thread callingcyg_thread_exit . However killing a thread is generally rather dangerous because no attempt is
made to unlock any synchronization primitives currently owned by that thread or release any other resources that
thread may have claimed. Therefore use of this function should be avoidedygmittead_exit is preferred.
cyg_thread_Kkill cannot be used by a thread to kill itself.

cyg_thread_delete should be used on a thread after it has exited and is no longer required. After this call the
thread handle is no longer valid, and both the cyg_thread structure and the thread stack can be re-used or freed. If
cyg_thread_delete is invoked on a thread that is still running then there is an implicit cayy¢othread_kill

Valid contexts

cyg_thread_exit , cyg_thread_Kkill andcyg_thread_delete can only be called from thread context.

49

Thread termination

50

Thread priorities

Name

cyg_thread_get_priority, cyg_thread_get current_priority,

cyg_thread_set_priority — Examine and manipulate thread priorities

Synopsis

#include <cyg/kernel/kapi.h >

cyg_priority_t cyg_thread_get_priority (cyg_handle_t thread);

cyg_priority_t cyg_thread_get_current_priority (cyg_handle_t thread);

void cyg_thread_set_priority (cyg_handle_t thread , cyg_priority t priority);
Description

Typical schedulers use the concept of a thread priority to determine which thread should run next. Exactly
what this priority consists of will depend on the scheduler, but a typical implementation would be a small
integer in the range 0 to 31, with 0 being the highest priority. Usually only the idle thread will run at the
lowest priority. The exact number of priority levels available depends on the configuration, typically the option
CYGNUM_KERNEL_SCHED_PRIORITIES

cyg_thread_get_priority can be used to determine the priority of a thread, or more correctly the value last used
in acyg_thread_set_priority call or when the thread was first created. In some circumstances it is possible
that the thread is actually running at a higher priority. For example, if it owns a mutex and priority ceilings or
inheritance is being used to prevent priority inversion problems, then the thread’s priority may have been boosted
temporarily.cyg_thread_get_current_priority returns the real current priority.

In many applications appropriate thread priorities can be determined and allocated statically. However, if it is
necessary for a thread’s priority to change at run-time thercyfieghread_set_priority function provides
this functionality.

Valid contexts

cyg_thread_get_priority andcyg_thread_get_current_priority can be called from thread or DSR con-
text, although the latter is rarely usefalg_thread_set_priority should also only be called from thread
context.

51

Thread priorities

52

Per-thread data

Name

cyg_thread_new_data_index, cyg_thread_free_data_index, cyg_thread get data,
cyg_thread_get data ptr, cyg_thread_set data — Manipulate per-thread data
Synopsis

#include <cyg/kernel/kapi.h >

cyg_ucount32 cyg_thread_new_data_index (void);

void cyg_thread_free_data_index (cyg_ucount32 index);

cyg_addrword_t cyg_thread_get_data (cyg_ucount32 index);
cyg_addrword_t* cyg_thread_get_data_ptr (cyg_ucount32 index);

void cyg_thread_set_data (cyg_ucount32 index , cyg_addrword_t data);

Description

In some applications and libraries it is useful to have some data that is specific to each thread. For example, many
of the functions in the POSIX compatibility package return -1 to indicate an error and store additional information

in what appears to be a global variableno . However, if multiple threads make concurrent calls into the POSIX
library and iferrno were really a global variable then a thread would have no way of knowing whether the current
errno value really corresponded to the last POSIX call it made, or whether some other thread had run in the
meantime and made a different POSIX call which updated the variable. To avoid such coefusioris instead
implemented as a per-thread variable, and each thread has its own instance.

The support for per-thread data can be disabled via the configuration @®WAR_KERNEL_THREADS_DATA

If enabled, each cyg_thread data structure holds a small array of words. The size of this array is determined by
the configuration optio@YGNUM_KERNEL_THREADS_DATA_MAKen a thread is created the array is filled with
zeroes.

If an application needs to use per-thread data then it needs an index into this array which has not yet been allocated
to other code. This index can be obtained by caltiyg thread_new_data_index , and then used in subsequent

calls tocyg_thread_get_data . Typically indices are allocated during system initialization and stored in static
variables. If for some reason a slot in the array is no longer required and can be re-used then it can be released by
callingcyg_thread_free_data_index ,

The current per-thread data in a given slot can be obtained aginthread_get_data . This implicitly operates

on the current thread, and its single argument should be an index as retureyed thyead_new_data_index

The per-thread data can be updated usjngthread_set_data . If a particular item of per-thread data is needed
repeatedly thenyg_thread_get_data_ptr can be used to obtain the address of the data, and indirecting through
this pointer allows the data to be examined and updated efficiently.

Some packages, for example the error and POSIX packages, have pre-allocated slots in the array of per-thread
data. These slots should not normally be used by application code, and instead slots should be allocated during
initialization by a call tocyg_thread_new_data_index . If it is known that, for example, the configuration will

53

Per-thread data

54

never include the POSIX compatibility package then application code may instead decide to re-use the slot allo-
cated to that packageYGNUM_KERNEL_THREADS_DATA_PQ%idt obviously this does involve a risk of strange
and subtle bugs if the application’s requirements ever change.

Valid contexts

Typically cyg_thread_new_data_index is only called during initialization, but may also be called at any time
in thread contextcyg_thread_free_data_index , if used at all, can also be called during initialization or from
thread contextyg_thread_get data ,cyg_thread_get_data_ptr , andcyg_thread_set_data may only be

called from thread context because they implicitly operate on the current thread.

Thread destructors

Name

cyg_thread_add_destructor, cyg_thread_rem_destructor — Call functions on thread
termination

Synopsis

#include <cyg/kernel/kapi.h >

typedef void (*cyg_thread_destructor_fn)(cyg_addrword_t);

cyg_bool_t cyg_thread_add_destructor (cyg_thread_destructor_fn fn, cyg_addrword_t data);
cyg_bool_t cyg_thread_rem_destructor (cyg_thread_destructor_fn fn, cyg_addrword_t data);
Description

These functions are provided for cases when an application requires a function to be automatically called when a
thread exits. This is often useful when, for example, freeing up resources allocated by the thread.

This support must be enabled with the configuration oplisGPKG_KERNEL_THREADS_DESTRUCTO®$en en-

abled, you may register a function of type cyg_thread_destructor_fn to be called on thread termination using
cyg_thread_add_destructor . You may also provide it with a piece of arbitrary information in ttetga argu-

ment which will be passed to the destructor funcfionwhen the thread terminates. If you no longer wish to call a
function previous registered wittyg_thread_add_destructor , you may calkyg_thread_rem_destructor

with the same parameters used to register the destructor function. Both these functionsuretion success and

false on failure.

By default, thread destructors are per-thread, which means that registering a destructor function only registers
that function for the current thread. In other words, each thread has its own list of destructors. Alternatively you
may disable the configuration opti@v¥GSEM_KERNEL_THREADS_DESTRUCTORS_PER_THRBEMIich case any
registered destructors will be run whanythreads exit. In other words, the thread destructor list is global and all
threads have the same destructors.

There is a limit to the number of destructors which may be registered, which can be controlled with the
CYGNUM_KERNEL_THREADS_DESTRUCT@RSfiguration option. Increasing this value will very slightly
increase the amount of memory in use, and WIBfGSEM_KERNEL_THREADS_DESTRUCTORS_PER_THREAD
is enabled, the amount of memory used per thread will increase. When the limit has been reached,
cyg_thread_add_destructor will return false

Valid contexts

When CYGSEM_KERNEL _THREADS DESTRUCTORS_PER_THRHAD enabled, these functions must
only be called from a thread context as they implicitly operate on the current thread. When
CYGSEM_KERNEL_THREADS_DESTRUCTORS_PER_THiRHElBabled, these functions may be called from thread
or DSR context, or at initialization time.

55

Thread destructors

56

Exception handling

Name

cyg_exception_set_handler, cyg_exception_clear_handler,

cyg_exception_call_handler — Handle processor exceptions

Synopsis

#include <cyg/kernel/kapi.h >

void cyg_exception_set_handler (cyg_code_t exception_number , cyg_exception_handler_t*
new_handler , cyg_addrword_t new_data , cyg_exception_handler_t** old_handler ,
cyg_addrword_t* old_data);

void cyg_exception_clear_handler (cyg_code_t exception_number);

void cyg_exception_call_handler (cyg_handle_t thread , cyg_code_t exception_number
cyg_addrword_t exception_info);

Description

Sometimes code attempts operations that are not legal on the current hardware, for example dividing by zero, or ac-
cessing data through a pointer that is not properly aligned. When this happens the hardware will raise an exception.
This is very similar to an interrupt, but happens synchronously with code execution rather than asynchronously and
hence can be tied to the thread that is currently running.

The exceptions that can be raised depend very much on the hardware, especially the processor. The corresponding
documentation should be consulted for more details. Alternatively the architectural HAL header fite.n |

or one of the variant or platform header files it includes, will contain appropriate definitions. The details of how to
handle exceptions, including whether or not it is possible to recover from them, also depend on the hardware.

Exception handling is optional, and can be disabled through the configuration option
CYGPKG_KERNEL_EXCEPTIONE an application has been exhaustively tested and is trusted never to raise

a hardware exception then this option can be disabled and code and data sizes will be reduced somewhat.
If exceptions are left enabled then the system will provide default handlers for the various exceptions, but
these do nothing. Even the specific type of exception is ignored, so there is no point in attempting to
decode this and distinguish between say a divide-by-zero and an unaligned access. If the application installs
its own handlers and wants details of the specific exception being raised then the configuration option
CYGSEM_KERNEL_EXCEPTIONS_DEC®IBE to be enabled.

An alternative handler can be installed usiyg_exception_set_handler . This requires a code for the excep-

tion, a function pointer for the new exception handler, and a parameter to be passed to this handler. Details of the
previously installed exception handler will be returned via the remaining two arguments, allowing that handler to
be reinstated, or null pointers can be used if this information is of no interest. An exception handling function
should take the following form:

void
my_exception_handler(cyg_addrword_t data, cyg_code_t exception, cyg_addrword_t info)

57

Exception handling

58

{
}

The data argument corresponds to tiev_data parameter supplied toyg_exception_set_handler . The
exception code is provided as well, in case a single handler is expected to support multiple exceptiorfe. The
argument will depend on the hardware and on the specific exception.

cyg_exception_clear_handler can be used to restore the default handler, if desired. It is also possible for
software to raise an exception and cause the current handler to be invoked, but generally this is useful only for
testing.

By default the system maintains a single set of global exception handlers. However, since exceptions
occur synchronously it is sometimes useful to handle them on a per-thread basis, and have a different
set of handlers for each thread. This behaviour can be obtained by disabling the configuration
option CYGSEM_KERNEL_EXCEPTIONS_GLOBAIlf per-thread exception handlers are being used then
cyg_exception_set_handler and cyg_exception_clear_handler apply to the current thread. Otherwise

they apply to the global set of handlers.

Caution

In the current implementation cyg_exception_call_handler can only be used on the current
thread. There is no support for delivering an exception to another thread.

Note: Exceptions at the eCos kernel level refer specifically to hardware-related events such as unaligned
accesses to memory or division by zero. There is no relation with other concepts that are also known as
exceptions, for example the throw and catch facilities associated with C++.

Valid contexts

If the system is configured with a single set of global exception handlersctlyenxception_set_handler
andcyg_exception_clear_handler may be called during initialization or from thread context. If instead per-
thread exception handlers are being used then it is not possible to install new handlers during initialization be-
cause the functions operate implicitly on the current thread, so they can only be called from thread context.
cyg_exception_call_handler should only be called from thread context.

Counters

Name

cyg_counter_create, cyg_counter_delete, cyg_counter_current_value,

cyg_counter_set value, cyg_counter_tick — Count event occurrences
Synopsis

#include <cyg/kernel/kapi.h >

void cyg_counter_create (cyg_handle_t* handle , cyg_counter* counter);

void cyg_counter_delete (cyg_handle_t counter);

cyg_tick_count_t cyg_counter_current_value (cyg_handle_t counter);

void cyg_counter_set value (cyg_handle_t counter , cyg_tick_count_t new_value);

void cyg_counter_tick (cyg_handle_t counter);

Description

Kernel counters can be used to keep track of how many times a particular event has occurred. Usually this event is
an external signal of some sort. The most common use of counters is in the implementation of clocks, but they can
be useful with other event sources as well. Application code can ataohsto counters, causing a function to be

called when some number of events have occurred.

A new counter is initialized by a call teyg_counter_create . The first argument is used to return a handle to the

new counter which can be used for subsequent operations. The second argument allows the application to provide
the memory needed for the object, thus eliminating any need for dynamic memory allocation within the kernel. If

a counter is no longer required and does not have any alarms attachegighanter_delete can be used to

release the resources, allowing the cyg_counter data structure to be re-used.

Initializing a counter does not automatically attach it to any source of events. Instead some other code needs to
call cyg_counter_tick whenever a suitable event occurs, which will cause the counter to be incremented
and may cause alarms to trigger. The current value associated with the counter can be retrieved using
cyg_counter_current_value and modified withcyg_counter_set_value . Typically the latter function is

only used during initialization, for example to set a clock to wallclock time, but it can be used to reset a counter if
necessary. Howeveyg_counter_set_value will never trigger any alarms. A newly initialized counter has a
starting value of 0.

The Kkernel provides two different implementations of counters. The default ds-
GIMP_KERNEL_COUNTERS_SINGLE_LISWhich stores all alarms attached to the counter on a single list. This is
simple and usually efficient. However when a tick occurs the kernel code has to traverse this list, typically at DSR
level, so if there are a significant number of alarms attached to a single counter this will affect the system’s
dispatch latency. The alternative implementationGIMP_KERNEL_COUNTERS_MULTI_LISStores each alarm in

one of an array of lists such that at most one of the lists needs to be searched per clock tick. This involves extra
code and data, but can improve real-time responsiveness in some circumstances. Another configuration option that
is relevant here iI€YGIMP_KERNEL_COUNTERS_SORT_LISwhich is disabled by default. This provides a trade

59

Counters

60

off between doing work whenever a new alarm is added to a counter and doing work whenever a tick occurs. It is
application-dependent which of these is more appropriate.

Valid contexts

cyg_counter_create is typically called during system initialization but may also be called in thread
context. Similarly cyg_counter_delete may be called during initialization or in thread context.
cyg_counter_current_value , Cyg_counter_set_value and cyg_counter_tick may be called during
initialization or from thread or DSR context. In faelg_counter_tick is usually called from inside a DSR in
response to an external event of some sort.

Clocks

Name

cyg_clock_create, cyg_clock_delete, cyg_clock to_counter,
cyg_clock_set_resolution, cyg_clock get resolution, cyg real_time_clock,

cyg_current_time — Provide system clocks

Synopsis

#include <cyg/kernel/kapi.h >

void cyg_clock_create (cyg_resolution_t resolution , cyg_handle_t* handle , cyg_clock*
clock);

void cyg_clock_delete (cyg_handle_t clock);

void cyg_clock_to_counter (cyg_handle_t clock , cyg_handle_t* counter);

void cyg_clock_set_resolution (cyg_handle_t clock , cyg_resolution_t resolution);
cyg_resolution_t cyg_clock_get_resolution (cyg_handle_t clock);

cyg_handle_t cyg_real_time_clock (void);

cyg_tick_count_t cyg_current_time (void);

Description

In the eCos kernel clock objects are a special forntainterobjects. They are attached to a specific type of
hardware, clocks that generate ticks at very specific time intervals, whereas counters can be used with any event
source.

In a default configuration the kernel provides a single clock instance, the real-time clock. This gets used for times-
licing and for operations that involve a timeout, for examyi@ semaphore_timed_wait . If this functionality is

not required it can be removed from the system using the configuration @t®wAR_KERNEL_COUNTERS_CLOCK
Otherwise the real-time clock can be accessed by a calbtaeal_time_clock , allowing applications to attach
alarms, and the current counter value can be obtained ogingurrent_time

Applications can create and destroy additional clocks if desired, using clock_create and
cyg_clock_delete . The first argument toyg_clock_create specifies theesolutionthis clock will run at. The

second argument is used to return a handle for this clock object, and the third argument provides the kernel with
the memory needed to hold this object. This clock will not actually tick by itself. Instead it is the responsibility of
application code to initialize a suitable hardware timer to generate interrupts at the appropriate frequency, install
an interrupt handler for this, and callg_counter_tick from inside the DSR. Associated with each clock is a
kernel counter, a handle for which can be obtained usjyggclock to_counter

Clock Resolutions and Ticks

At the kernel level all clock-related operations including delays, timeouts and alarms work in units of clock ticks,
rather than in units of seconds or milliseconds. If the calling code, whether the application or some other package,
needs to operate using units such as milliseconds then it has to convert from these units to clock ticks.

61

Clocks

The main reason for this is that it accurately reflects the hardware: calling somethingridsteep with a delay

of ten nanoseconds will not work as intended on any real hardware because timer interrupts simply will not happen
that frequently; instead callingyg_thread_delay ~ with the equivalent delay of O ticks gives a much clearer
indication that the application is attempting something inappropriate for the target hardware. Similarly, passing a
delay of five ticks tocyg_thread_delay makes it fairly obvious that the current thread will be suspended for
somewhere between four and five clock periods, as opposed to passing 500008@8k@p which suggests a
granularity that is not actually provided.

A secondary reason is that conversion between clock ticks and units such as milliseconds can be somewhat expen-
sive, and whenever possible should be done at compile-time or by the application developer rather than at run-time.
This saves code size and cpu cycles.

The information needed to perform these conversions is the clock resolution. This is a structure with two fields,
a dividend and a divisor, and specifies the number of nanoseconds between clock ticks. For example a clock
that runs at 100Hz will have 10 milliseconds between clock ticks, or 20000000 nanoseconds. The ratio between the
resolution’s dividend and divisor will therefore be 10000000 to 1, and typical values for these might be 1000000000
and 100. If the clock runs at a different frequency, say 60Hz, the numbers could be 1000000000 and 60 respectively.
Given a delay in hanoseconds, this can be converted to clock ticks by multiplying with the the divisor and then
dividing by the dividend. For example a delay of 50 milliseconds corresponds to 50000000 nanoseconds, and with
a clock frequency of 100Hz this can be converted to ((50000000 * 100) / 1000000000) = 5 clock ticks. Given the
large numbers involved this arithmetic normally has to be done using 64-bit precision and the long long data type,
but allows code to run on hardware with unusual clock frequencies.

The default frequency for the real-time clock on any platform is usually about 100Hz, but platform-specific docu-
mentation should be consulted for this information. Usually it is possible to override this default by configuration
options, but again this depends on the capabilities of the underlying hardware. The resolution for any clock can
be obtained usingyg_clock_get_resolution . For clocks created by application code, there is also a function
cyg_clock_set_resolution . This does not affect the underlying hardware timer in any way, it merely updates
the information that will be returned in subsequent callsyi® clock_get_resolution : changing the actual
underlying clock frequency will require appropriate manipulation of the timer hardware.

Valid contexts

cyg_clock_create is usually only called during system initialization (if at all), but may also be called from
thread context. The same appliesci@_clock_delete . The remaining functions may be called during initial-
ization, from thread context, or from DSR context, although it should be noted that there is no locking between
cyg_clock_get_resolution andcyg_clock_set_resolution so theoretically it is possible that the former
returns an inconsistent data structure.

62

Alarms

Name

cyg_alarm_create, cyg_alarm_delete, cyg_alarm_initialize, cyg_alarm_enable,
cyg_alarm_disable — Run an alarm function when a number of events have occurred

Synopsis

#include <cyg/kernel/kapi.h >

void cyg_alarm_create (cyg_handle_t counter , cyg_alarm_t* alarmfn , cyg_addrword_t data ,

cyg_handle_t* handle , cyg_alarm* alarm);

void cyg_alarm_delete (cyg_handle_t alarm);

void cyg_alarm_initialize (cyg_handle_t alarm , cyg_tick_count_t trigger
cyg_tick_count_t interval);

void cyg_alarm_enable (cyg_handle_t alarm);

void cyg_alarm_disable (cyg_handle_t alarm);

Description

Kernel alarms are used together with counters and allow for action to be taken when a certain number of events
have occurred. If the counter is associated with a clock then the alarm action happens when the appropriate number
of clock ticks have occurred, in other words after a certain period of time.

Setting up an alarm involves a two-step process. First the alarm must be created with eygalitom_create

This takes five arguments. The first identifies the counter to which the alarm should be attached. If the alarm should
be attached to the system’s real-time clock tlegg real_time_clock andcyg_clock_to_counter can be

used to get hold of the appropriate handle. The next two arguments specify the action to be taken when the alarm
is triggered, in the form of a function pointer and some data. This function should take the form:

void
alarm_handler(cyg_handle_t alarm, cyg_addrword_t data)

{
}

The data argument passed to the alarm function corresponds to the third argument pagsethto_create

The fourth argument toyg_alarm_create is used to return a handle to the newly-created alarm object, and the
final argument provides the memory needed for the alarm object and thus avoids any need for dynamic memory
allocation within the kernel.

Once an alarm has been created a further calygoalarm_initialize is needed to activate it. The first argu-

ment specifies the alarm. The second argument indicates the number of events, for example clock ticks, that need
to occur before the alarm triggers. If the third argument is 0 then the alarm will only trigger once. A non-zero value
specifies that the alarm should trigger repeatedly, with an interval of the specified number of events.

63

Alarms

64

Alarms can be temporarily disabled and reenabled usyggalarm_disable andcyg_alarm_enable . Alter-
natively another call teyg_alarm_initialize can be used to modify the behaviour of an existing alarm. If an
alarm is no longer required then the associated resources can be releaseggusiagn_delete

The alarm function is invoked when a counter tick occurs, in other words when there is a call to
cyg_counter_tick , and will happen in the same context. If the alarm is associated with the system’s real-time
clock then this will be DSR context, following a clock interrupt. If the alarm is associated with some other
application-specific counter then the details will depend on how that counter is updated.

If two or more alarms are registered for precisely the same counter tick, the order of execution of the alarm functions
is unspecified.

Valid contexts

cyg_alarm_create cyg_alarm_initialize is typically called during system initialization but may
also be called in thread context. The same appliescytg alarm_delete . cyg_alarm_initialize ,
cyg_alarm_disable and cyg_alarm_enable may be called during initialization or from thread or DSR
context, buttyg_alarm_enable andcyg_alarm_initialize may be expensive operations and should only be

called when necessary.

Mutexes

Name

cyg_mutex_init, cyg_mutex_destroy, cyg_mutex_lock, cyg_mutex_trylock,
cyg_mutex_unlock, cyg_mutex_release, cyg_mutex_set_ceiling,

cyg_mutex_set_protocol — Synchronization primitive
Synopsis
#include <cyg/kernel/kapi.h >

void cyg_mutex_init (cyg_mutex_t* mutex);

void cyg_mutex_destroy (cyg_mutex_t* mutex);
cyg_bool_t cyg_mutex_lock (cyg_mutex_t* mutex);
cyg_bool_t cyg_mutex_trylock (cyg_mutex_t* mutex);
void cyg_mutex_unlock (cyg_mutex_t* mutex);

void cyg_mutex_release (cyg_mutex_t* mutex);

void cyg_mutex_set_ceiling (cyg_mutex_t* mutex , cyg_priority t priority);
void cyg_mutex_set_protocol (cyg_mutex_t* mutex , enum cyg_mutex_protocol protocol/);
Description

The purpose of mutexes is to let threads share resources safely. If two or more threads attempt to manipulate a data
structure with no locking between them then the system may run for quite some time without apparent problems,
but sooner or later the data structure will become inconsistent and the application will start behaving strangely and
is quite likely to crash. The same can apply even when manipulating a single variable or some other resource. For
example, consider:

static volatile int counter = 0;

void
process_event(void)

{

counter++;

}

Assume that after a certain period of tirmsunter has a value of 42, and two threads A and B running at the
same priority calbrocess_event . Typically thread A will read the value aounter into a register, increment

this register to 43, and write this updated value back to memory. Thread B will do the same, so ¢tsunedly

will end up with a value of 44. However if thread A is timesliced after reading the old value 42 but before writing
back 43, thread B will still read back the old value and will also write back 43. The net result is that the counter
only gets incremented once, not twice, which depending on the application may prove disastrous.

65

Mutexes

66

Sections of code like the above which involve manipulating shared data are generally known as critical regions.
Code should claim a lock before entering a critical region and release the lock when leaving. Mutexes provide an
appropriate synchronization primitive for this.

static volatile int counter = 0;
static cyg_mutex_t lock;

void
process_event(void)

{

cyg_mutex_lock(&lock);
counter++;
cyg_mutex_unlock(&lock);

A mutex must be initialized before it can be used, by calloyg_mutex_init . This takes a pointer to a
cyg_mutex_t data structure which is typically statically allocated, and may be part of a larger data structure. If a
mutex is no longer required and there are no threads waiting on it{lsgemutex_destroy ~ can be used.

The main functions for using a mutex aegg_mutex_lock and cyg_mutex_unlock . In normal operation
cyg_mutex_lock will return success after claiming the mutex lock, blocking if another thread currently owns the
mutex. However the lock operation may fail if other code cajtp mutex_release or cyg_thread_release ,

so if these functions may get used then it is important to check the return value. The current owner of a mutex
should callcyg_mutex_unlock ~ when a lock is no longer required. This operation must be performed by the
owner, not by another thread.

cyg_mutex_trylock is a variant ofcyg_mutex_lock that will always return immediately, returning success or
failure as appropriate. This function is rarely useful. Typical code locks a mutex just before entering a critical
region, so if the lock cannot be claimed then there may be nothing else for the current thread to do. Use of this
function may also cause a form of priority inversion if the owner owner runs at a lower priority, because the
priority inheritance code will not be triggered. Instead the current thread continues running, preventing the owner
from getting any cpu time, completing the critical region, and releasing the mutex.

cyg_mutex_release can be used to wake up all threads that are currently blocked inside a call to
cyg_mutex_lock for a specific mutex. These lock calls will return failure. The current mutex owner is not
affected.

Priority Inversion

The use of mutexes gives rise to a problem known as priority inversion. In a typical scenario this requires three
threads A, B, and C, running at high, medium and low priority respectively. Thread A and thread B are temporarily
blocked waiting for some event, so thread C gets a chance to run, needs to enter a critical region, and locks a mutex.
At this point threads A and B are woken up - the exact order does not matter. Thread A needs to claim the same
mutex but has to wait until C has left the critical region and can release the mutex. Meanwhile thread B works on
something completely different and can continue running without problems. Because thread C is running a lower
priority than B it will not get a chance to run until B blocks for some reason, and hence thread A cannot run either.
The overall effect is that a high-priority thread A cannot proceed because of a lower priority thread B, and priority
inversion has occurred.

Mutexes

In simple applications it may be possible to arrange the code such that priority inversion cannot occur, for example
by ensuring that a given mutex is never shared by threads running at different priority levels. However this may not
always be possible even at the application level. In addition mutexes may be used internally by underlying code,
for example the memory allocation package, so careful analysis of the whole system would be needed to be sure
that priority inversion cannot occur. Instead it is common practice to use one of two techniques: priority ceilings
and priority inheritance.

Priority ceilings involve associating a priority with each mutex. Usually this will match the highest priority thread
that will ever lock the mutex. When a thread running at a lower priority makes a successfukgalltaitex_lock

Or cyg_mutex_trylock its priority will be boosted to that of the mutex. For example, given the previous example
the priority associated with the mutex would be that of thread A, so for as long as it owns the mutex thread C will
run in preference to thread B. When C releases the mutex its priority drops to the normal value again, allowing A
to run and claim the mutex. Setting the priority for a mutex involves a calydomutex_set_ceiling , which

is typically called during initialization. It is possible to change the ceiling dynamically but this will only affect
subsequent lock operations, not the current owner of the mutex.

Priority ceilings are very suitable for simple applications, where for every thread in the system it is possible to
work out which mutexes will be accessed. For more complicated applications this may prove difficult, especially
if thread priorities change at run-time. An additional problem occurs for any mutexes outside the application,
for example used internally within eCos packages. A typical eCos package will be unaware of the details of the
various threads in the system, so it will have no way of setting suitable ceilings for its internal mutexes. If those
mutexes are not exported to application code then using priority ceilings may not be viable. The kernel does provide
a configuration optiolCYGSEM_KERNEL_SYNCH_MUTEX_PRIORITY_INVERSION_PROTOCOL_DEFAULT_PRIORITY
that can be used to set the default priority ceiling for all mutexes, which may prove sufficient.

The alternative approach is to use priority inheritance: if a thread egjlsnutex_lock for a mutex that it cur-

rently owned by a lower-priority thread, then the owner will have its priority raised to that of the current thread.
Often this is more efficient than priority ceilings because priority boosting only happens when necessary, not for
every lock operation, and the required priority is determined at run-time rather than by static analysis. However
there are complications when multiple threads running at different priorities try to lock a single mutex, or when
the current owner of a mutex then tries to lock additional mutexes, and this makes the implementation significantly
more complicated than priority ceilings.

There are a number of configuration options associated with priority inversion.
First, if after careful analysis it is known that priority inversion cannot arise then

the component CYGSEM_KERNEL_SYNCH_MUTEX_PRIORITY_INVERSION_PROTOCOL
can be disabled. More commonly this component will be enabled, and one of either
CYGSEM_KERNEL_SYNCH_MUTEX_PRIORITY_INVERSION_PROTOCOL_INHERIT or

CYGSEM_KERNEL_SYNCH_MUTEX_PRIORITY_INVERSION_PROTOCOL_CEILNIG be selected, so that one of

the two protocols is available for all mutexes. It is possible to select multiple protocols, so that some mutexes can
have priority ceilings while others use priority inheritance or no priority inversion protection at all. Obviously
this flexibility will add to the code size and to the cost of mutex operations. The default for all mutexes will
be controlled byCYGSEM_KERNEL_SYNCH_MUTEX_PRIORITY_INVERSION_PROTOCOL_DEFAamd can be
changed at run-time usirgyg_mutex_set_protocol

Priority inversion problems can also occur with other synchronization primitives such as semaphores. For example
there could be a situation where a high-priority thread A is waiting on a semaphore, a low-priority thread C needs
to do just a little bit more work before posting the semaphore, but a medium priority thread B is running and
preventing C from making progress. However a semaphore does not have the concept of an owner, so there is no
way for the system to know that it is thread C which would next post to the semaphore. Hence there is no way for
the system to boost the priority of C automatically and prevent the priority inversion. Instead situations like this

67

Mutexes

68

have to be detected by application developers and appropriate precautions have to be taken, for example making
sure that all the threads run at suitable priorities at all times.

Warning

The current implementation of priority inheritance within the eCos kernel does not handle
certain exceptional circumstances completely correctly. Problems will only arise if a thread
owns one mutex, then attempts to claim another mutex, and there are other threads at-
tempting to lock these same mutexes. Although the system will continue running, the current
owners of the various mutexes involved may not run at the priority they should. This situation
never arises in typical code because a mutex will only be locked for a small critical region,
and there is no need to manipulate other shared resources inside this region. A more com-
plicated implementation of priority inheritance is possible but would add significant overhead
and certain operations would no longer be deterministic.

Warning

Support for priority ceilings and priority inheritance is not implemented for all schedulers. In
particular neither priority ceilings nor priority inheritance are currently available for the bitmap
scheduler.

Alternatives

In nearly all circumstances, if two or more threads need to share some data then protecting this data with a mutex
is the correct thing to do. Mutexes are the only primitive that combine a locking mechanism and protection against
priority inversion problems. However this functionality is achieved at a cost, and in exceptional circumstances such
as an application’s most critical inner loop it may be desirable to use some other means of locking.

When a critical region is very very small it is possible to lock the scheduler, thus ensuring that no other
thread can run until the scheduler is unlocked again. This is achieved with cadlg techeduler_lock

and cyg_scheduler_unlock . If the critical region is sufficiently small then this can actually improve both
performance and dispatch latency becatygemutex_lock also locks the scheduler for a brief period of time.

This approach will not work on SMP systems because another thread may already be running on a different
processor and accessing the critical region.

Another way of avoiding the use of mutexes is to make sure that all threads that access a particular critical region
run at the same priority and configure the system with timeslicing disabl8EM_KERNEL_SCHED_TIMESLILE
Without timeslicing a thread can only be preempted by a higher-priority one, or if it performs some operation that
can block. This approach requires that none of the operations in the critical region can block, so for example it is
not legal to calkyg_semaphore_wait . It is also vulnerable to any changes in the configuration or to the various
thread priorities: any such changes may now have unexpected side effects. It will not work on SMP systems.

Recursive Mutexes

The implementation of mutexes within the eCos kernel does not support recursive locks. If a thread has locked a
mutex and then attempts to lock the mutex again, typically as a result of some recursive call in a complicated call
graph, then either an assertion failure will be reported or the thread will deadlock. This behaviour is deliberate.

Mutexes

When a thread has just locked a mutex associated with some data structure, it can assume that that data structure is
in a consistent state. Before unlocking the mutex again it must ensure that the data structure is again in a consistent
state. Recursive mutexes allow a thread to make arbitrary changes to a data structure, then in a recursive call lock
the mutex again while the data structure is still inconsistent. The net result is that code can no longer make any
assumptions about data structure consistency, which defeats the purpose of using mutexes.

Valid contexts

cyg_mutex_init , cyg_mutex_set_ceiling and cyg_mutex_set_protocol are normally called during ini-
tialization but may also be called from thread context. The remaining functions should only be called from thread
context. Mutexes serve as a mutual exclusion mechanism between threads, and cannot be used to synchronize
between threads and the interrupt handling subsystem. If a critical region is shared between a thread and a DSR
then it must be protected usiiaggy_scheduler_lock andcyg_scheduler_unlock . If a critical region is shared

between a thread and an ISR, it must be protected by disabling or masking interrupts. Obviously these operations
must be used with care because they can affect dispatch and interrupt latencies.

69

Mutexes

70

Condition Variables

Name

cyg_cond_init, cyg_cond_destroy, cyg_cond_wait, cyg cond_timed_wait,
cyg_cond_signal, cyg cond_broadcast — Synchronization primitive
Synopsis

#include <cyg/kernel/kapi.h >

void cyg_cond_init (cyg_cond_t* cond, cyg_mutex_t* mutex);

void cyg_cond_destroy (cyg_cond_t* cond);

cyg_bool_t cyg _cond_wait (cyg_cond_t* cond);

cyg_bool t cyg_cond_timed_wait (cyg_cond_t* cond, cyg_tick_count_t abstime);
void cyg_cond_signal (cyg_cond_t* cond);

void cyg_cond_broadcast (cyg_cond_t* cond);

Description

Condition variables are used in conjunction with mutexes to implement long-term waits for some condition to
become true. For example consider a set of functions that control access to a pool of resources:

cyg_mutex_t res_lock;
res_t res_pool[RES_MAX];
int res_count = RES_MAX;

void res_init(void)

{
cyg_mutex_init(&res_lock);
<fill pool with resources >
}
res_t res_allocate(void)
{
res_t res;
cyg_mutex_lock(&res_lock); /I lock the mutex
if(res_count == 0) /I check for free resource
res = RES_NONE; /I return RES_NONE if none
else
{
res_count--; /I allocate a resources

res = res_pool[res_count];

71

Condition Variables

cyg_mutex_unlock(&res_lock); /I unlock the mutex
return res;
}
void res_free(res_t res)
{
cyg_mutex_lock(&res_lock); /I lock the mutex
res_pool[res_count] = res; /I free the resource
res_count++;
cyg_mutex_unlock(&res_lock); /I unlock the mutex
}

These routines use the variabkes_count to keep track of the resources available. If there are none then
res_allocate returnsRES_NONEwhich the caller must check for and take appropriate error handling actions.

Now suppose that we do not want to retRBS_NONBvhen there are no resources, but want to wait for one to
become available. This is where a condition variable can be used:

cyg_mutex_t res_lock;
cyg_cond_t res_wait;
res_t res_pool[RES_MAX];
int res_count = RES_MAX;

void res_init(void)

{
cyg_mutex_init(&res_lock);
cyg_cond_init(&res_wait, &res_lock);
<fill pool with resources >

}

res_t res_allocate(void)
{
res_t res;

cyg_mutex_lock(&res_lock); /I lock the mutex

while(res_count == 0) /I wait for a resources
cyg_cond_wait(&res_wait);

res_count--; /I allocate a resource
res = res_pool[res_count];

cyg_mutex_unlock(&res_lock); /I unlock the mutex

return res;

}

void res_free(res_t res)

{

72

Condition Variables
cyg_mutex_lock(&res_lock); /I lock the mutex

res_pool[res_count] = res; /I free the resource
res_count++;

cyg_cond_signal(&res_wait); /I wake up any waiting allocators

cyg_mutex_unlock(&res_lock); /I unlock the mutex

In this version of the code, whems_allocate detects that there are no resources it calts cond_wait

This does two things: it unlocks the mutex, and puts the calling thread to sleep on the condition variable. When
res_free is eventually called, it puts a resource back into the pool and eallgond_signal ~ to wake up any

thread waiting on the condition variable. When the waiting thread eventually gets to run again, it will re-lock the
mutex before returning fronyg_cond_wait

There are two important things to note about the way in which this code works. The first is that the mutex unlock
and wait incyg_cond_wait are atomic: no other thread can run between the unlock and the wait. If this were not
the case then acall tes_free by that thread would release the resource but the cajigacond_signal ~ would

be lost, and the first thread would end up waiting when there were resources available.

The second feature is that the calld@_cond_wait is in awhile loop and not a simplé statement. This is
because of the need to re-lock the mutexyg_cond_wait when the signalled thread reawakens. If there are
other threads already queued to claim the lock then this thread must wait. Depending on the scheduler and the
gqueue order, many other threads may have entered the critical section before this one gets to run. So the condition
that it was waiting for may have been rendered false. Using a loop around all condition variable wait operations is
the only way to guarantee that the condition being waited for is still true after waiting.

Before a condition variable can be used it must be initialized with a calydocond_init . This requires two
arguments, memory for the data structure and a pointer to an existing mutex. This mutex will not be initialized
by cyg_cond_init , instead a separate call ¢gg_mutex_init is required. If a condition variable is no longer
required and there are no threads waiting on it hy@ncond_destroy can be used.

When a thread needs to wait for a condition to be satisfied it carcyg@ltond_wait . The thread must have
already locked the mutex that was specified in ¢hg cond_init call. This mutex will be unlocked and the
current thread will be suspended in an atomic operation. When some other thread performs a signal or broadcast
operation the current thread will be woken up and automatically reclaim ownership of the mutex again, allowing it
to examine global state and determine whether or not the condition is now satisfied. The kernel supplies a variant of
this functioncyg_cond_timed_wait , which can be used to wait on the condition variable or until some number of
clock ticks have occurred. The mutex will always be reclaimed befarecond_timed_wait returns, regardless

of whether it was a result of a signal operation or a timeout.

There is nocyg_cond_trywait function because this would not serve any purpose. If a thread has locked the
mutex and determined that the condition is satisfied, it can just release the mutex and return. There is no need to
perform any operation on the condition variable.

When a thread changes shared state that may affect some other thread blocked on a condition variable, it should
call eithercyg_cond_signal or cyg_cond_broadcast . These calls do not require ownership of the mutex, but
usually the mutex will have been claimed before updating the shared state. A signal operation only wakes up the
first thread that is waiting on the condition variable, while a broadcast wakes up all the threads. If there are no
threads waiting on the condition variable at the time, then the signal or broadcast will have no effect: past signals
are not counted up or remembered in any way. Typically a signal should be used when all threads will check the

73

Condition Variables

74

same condition and at most one thread can continue running. A broadcast should be used if threads check slightly
different conditions, or if the change to the global state might allow multiple threads to proceed.

Valid contexts

cyg_cond_init is typically called during system initialization but may also be called in thread context. The
same applies toyg_cond_delete . cyg_cond_wait andcyg_cond_timedwait may only be called from thread

context since they may blockyg_cond_signal andcyg_cond_broadcast ~may be called from thread or DSR
context.

Semaphores

Name

cyg_semaphore_init, cyg_semaphore_destroy, cyg_semaphore_wait,
cyg_semaphore_timed_wait, cyg_semaphore_post, cyg semaphore_peek —
Synchronization primitive

Synopsis

#include <cyg/kernel/kapi.h >

void cyg_semaphore_init (cyg_sem_t* sem, cyg_count32 val);

void cyg_semaphore_destroy (cyg_sem_t* sem);

cyg_bool t cyg semaphore_wait (cyg_sem_t* sem);

cyg_bool t cyg_semaphore_timed_wait (cyg_sem_t* sem, cyg_tick_count_t abstime);
cyg_bool t cyg_semaphore_trywait (cyg_sem_t* sem);

void cyg_semaphore_post (cyg_sem_t* sem);

void cyg_semaphore_peek (cyg_sem_t* sem, cyg_count32* val);

Description

Counting semaphores aresgnchronization primitivehat allow threads to wait until an event has occurred. The

event may be generated by a producer thread, or by a DSR in response to a hardware interrupt. Associated with
each semaphore is an integer counter that keeps track of the number of events that have not yet been processed. If
this counter is zero, an attempt by a consumer thread to wait on the semaphore will block until some other thread
or a DSR posts a new event to the semaphore. If the counter is greater than zero then an attempt to wait on the
semaphore will consume one event, in other words decrement the counter, and return immediately. Posting to a
semaphore will wake up the first thread that is currently waiting, which will then resume inside the semaphore wait
operation and decrement the counter again.

Another use of semaphores is for certain forms of resource management. The counter would correspond to how
many of a certain type of resource are currently available, with threads waiting on the semaphore to claim a
resource and posting to release the resource again. In praoticition variablegre usually much better suited

for operations like this.

cyg_semaphore_init is used to initialize a semaphore. It takes two arguments, a pointer to a cyg_sem_t structure
and an initial value for the counter. Note that semaphore operations, unlike some other parts of the kernel API, use
pointers to data structures rather than handles. This makes it easier to embed semaphores in a larger data structure.
The initial counter value can be any number, zero, positive or negative, but typically a value of zero is used to
indicate that no events have occurred yet.

cyg_semaphore_wait is used by a consumer thread to wait for an event. If the current counter is greater than 0,
in other words if the event has already occurred in the past, then the counter will be decremented and the call will
return immediately. Otherwise the current thread will be blocked until thereyig aemaphore_post call.

75

Semaphores

76

cyg_semaphore_post is called when an event has occurs. This increments the counter and wakes up
the first thread waiting on the semaphore (if any). Usually that thread will then continue running inside
cyg_semaphore_wait and decrement the counter again. However other scenarioes are possible. For example the
thread callingcyg_semaphore_post may be running at high priority, some other thread running at medium
priority may be about to callyg_semaphore_wait when it next gets a chance to run, and a low priority thread
may be waiting on the semaphore. What will happen is that the current high priority thread continues running until
it is descheduled for some reason, then the medium priority thread runs and its eall #emaphore_wait

succeeds immediately, and later on the low priority thread runs again, discovers a counter value of 0, and blocks
until another event is posted. If there are multiple threads blocked on a semaphore then the configuration option
CYGIMP_KERNEL_SCHED_SORTED_QUEUdE®rmines which one will be woken up by a post operation.

cyg_semaphore_wait returns a boolean. Normally it will block until it has successfully decremented the
counter, retrying as necessary, and return success. However the wait operation may be aborted by a call to
cyg_thread_release , andcyg_semaphore_wait will then return false.

cyg_semaphore_timed_wait is a variant ofcyg_semaphore_wait . It can be used to wait until either an event

has occurred or a number of clock ticks have happened. The function returns success if the semaphore wait op-
eration succeeded, or false if the operation timed out or was aborteggb¥read_release . If support for

the real-time clock has been removed from the current configuration then this function will not be available.
cyg_semaphore_trywait is another variant which will always return immediately rather than block, again re-
turning success or failure.

cyg_semaphore_peek can be used to get hold of the current counter value. This function is rarely useful except
for debugging purposes since the counter value may change at any time if some other thread or a DSR performs a
semaphore operation.

Valid contexts

cyg_semaphore_init is normally called during initialization but may also be called from thread context.
cyg_semaphore_wait andcyg_semaphore_timed_wait may only be called from thread context because these
operations may blockcyg_semaphore_trywait , cyg_semaphore_post and cyg_semaphore_peek may be

called from thread or DSR context.

Mail boxes

Name

cyg_mbox_create, cyg_mbox_delete, cyg_mbox_get, cyg_mbox_timed_get,
cyg_mbox_tryget, cyg_mbox_peek_item, cyg_mbox_put, cyg_mbox timed_put,
cyg_mbox_tryput, cyg_mbox_peek, cyg_mbox_waiting_to_get,

cyg_mbox_waiting_to_put — Synchronization primitive
Synopsis

#include <cyg/kernel/kapi.h >

void cyg_mbox_create (cyg_handle_t* handle , cyg_mbox* mbox);

void cyg_mbox_delete (cyg_handle_t mbox);

void* cyg_mbox_get (cyg_handle_t mbox);

void* cyg_mbox_timed_get (cyg_handle_t mbox, cyg_tick_count_t abstime);
void* cyg_mbox_tryget (cyg_handle_t mbox);

cyg_count32 cyg_mbox_peek (cyg_handle_t mbox);

void* cyg_mbox_peek_item (cyg_handle_t mbox);

cyg_bool_t cyg_mbox_put (cyg_handle_t mbox, void* item);

cyg_bool_t cyg_mbox_timed_put (cyg_handle_t mbox, void* item , cyg_tick_count_t abstime);
cyg_bool_t cyg_mbox_tryput (cyg_handle_t mbox, void* item);

cyg_bool_t cyg_mbox_waiting_to_get (cyg_handle_t mbox);

cyg_bool_t cyg_mbox_waiting_to_put (cyg_handle_t mbox);

Description

Mail boxes are a synchronization primitive. Like semaphores they can be used by a consumer thread to wait until a
certain event has occurred, but the producer also has the ability to transmit some data along with each event. This
data, the message, is normally a pointer to some data structure. It is stored in the mail box itself, so the producer
thread that generates the event and provides the data usually does not have to block until some consumer thread
is ready to receive the event. However a mail box will only have a finite capacity, typically ten slots. Even if the
system is balanced and events are typically consumed at least as fast as they are generated, a burst of events can
cause the mail box to fill up and the generating thread will block until space is available again. This behaviour is
very different from semaphores, where it is only necessary to maintain a counter and hence an overflow is unlikely.

Before a mail box can be used it must be created with a caljgombox_create . Each mail box has a unique
handle which will be returned via the first argument and which should be used for subsequent operations.
cyg_mbox_create also requires an area of memory for the kernel structure, which is provided by the cyg_mbox
second argument. If a mail box is no longer required thgn mbox_delete can be used. This will simply
discard any messages that remain posted.

The main function for waiting on a mail box &yg_mbox_get . If there is a pending message because of a call

to cyg_mbox_put thencyg_mbox_get will return immediately with the message that was put into the mail box.
Otherwise this function will block until there is a put operation. Exceptionally the thread can instead be unblocked
by a call tocyg_thread_release , inwhich caseyg_mbox_get will return a null pointer. It is assumed that there

77

Mail boxes

78

will never be a call tayg_mbox_put with a null pointer, because it would not be possible to distinguish between
that and a release operation. Messages are always retrieved in the order in which they were put into the mail box,
and there is no support for messages with different priorities.

There are two variants afyg_mbox_get . The first,cyg_mbox_timed_get will wait until either a message is
available or until a number of clock ticks have occurred. If no message is posted within the timeout then a null
pointer will be returnedeyg_mbox_tryget is a non-blocking operation which will either return a message if one

is available or a null pointer.

New messages are placed in the mail box by caliyxg mbox_put or one of its variants. The main put function

takes two arguments, a handle to the mail box and a pointer for the message itself. If there is a spare slot in the
mail box then the new message can be placed there immediately, and if there is a waiting thread it will be woken
up so that it can receive the message. If the mail box is currently full éhembox_put will block until there

has been a get operation and a slot is available.cJhembox_timed_put variant imposes a time limit on the

put operation, returning false if the operation cannot be completed within the specified number of clock ticks. The
cyg_mbox_tryput variant is non-blocking, returning false if there are no free slots available and the message
cannot be posted without blocking.

There are a further four functions available for examining the current state of a mailbox. The results of these
functions must be used with care because usually the state can change at any time as a result of activity within
other threads, but they may prove occasionally useful during debugging or in special situgtiontox_peek

returns a count of the number of messages currently stored in the maitylgorbox_peek_item retrieves the

first message, but it remains in the mail box until a get operation is perforygdnbox_waiting_to_get and
cyg_mbox_waiting_to_put indicate whether or not there are currently threads blocked in a get or a put operation
on a given mail box.

The number of slots in each mail box is controlled by a configuration option
CYGNUM_KERNEL_SYNCH_MBOX_QUEUE_Swith a default value of 10. All mail boxes are the same size.

Valid contexts

cyg_mbox_create is typically called during system initialization but may also be called in thread context. The
remaining functions are normally called only during thread context. Of special nofg imbox_put which can

be a blocking operation when the mail box is full, and which therefore must never be called from DSR context. It
is permitted to caltyg_mbox_tryput , cyg_mbox_tryget , and the information functions from DSR context but
this is rarely useful.

Event Flags

Name

cyg_flag_init, cyg_flag_destroy, cyg_flag_setbits, cyg_flag_maskbits,
cyg_flag_wait, cyg_flag_timed_wait, cyg flag_poll, cyg_flag_peek,

cyg_flag_waiting — Synchronization primitive
Synopsis
#include <cyg/kernel/kapi.h >

void cyg_flag_init (cyg_flag_t* flag);
void cyg_flag_destroy (cyg_flag_t* flag);

void cyg_flag_setbits (cyg_flag_t* flag , cyg_flag_value_t value);

void cyg_flag_maskbits (cyg_flag_t* flag , cyg_flag_value_t value);

cyg_flag_value_t cyg_flag_wait (cyg_flag_t* flag , cyg_flag_value_t pattern
cyg_flag_mode_t mode);

cyg_flag_value_t cyg_flag_timed_wait (cyg_flag_t* flag , cyg_flag_value_t pattern
cyg_flag_mode_t mode, cyg_tick_count_t abstime);

cyg_flag_value_t cyg_flag_poll (cyg_flag_t* flag , cyg_flag_value_t pattern

cyg_flag_mode_t mode);
cyg_flag_value_t cyg_flag_peek (cyg_flag_t* flag);
cyg _bool t cyg flag waiting (cyg_flag_t* flag);

Description

Event flags allow a consumer thread to wait for one of several different types of event to occur. Alternatively it is
possible to wait for some combination of events. The implementation is relatively straightforward. Each event flag
contains a 32-bit integer. Application code associates these bits with specific events, so for example bit 0 could
indicate that an I/O operation has completed and data is available, while bit 1 could indicate that the user has
pressed a start button. A producer thread or a DSR can cause one or more of the bits to be set, and a consumer
thread currently waiting for these bits will be woken up.

Unlike semaphores no attempt is made to keep track of event counts. It does not matter whether a given event
occurs once or multiple times before being consumed, the corresponding bit in the event flag will change only
once. However semaphores cannot easily be used to handle multiple event sources. Event flags can often be used
as an alternative to condition variables, although they cannot be used for completely arbitrary conditions and they
only support the equivalent of condition variable broadcasts, not signals.

Before an event flag can be used it must be initialized by a calydoflag_init . This takes a pointer to a
cyg_flag_t data structure, which can be part of a larger structure. All 32 bits in the event flag will be set to 0,
indicating that no events have yet occurred. If an event flag is no longer required it can be cleaned up with a call to
cyg_flag_destroy , allowing the memory for theyg_flag_t structure to be re-used.

79

Event Flags

A consumer thread can wait for one or more events by catiyiagflag_wait . This takes three arguments. The
first identifies a particular event flag. The second is some combination of bits, indicating which events are of
interest. The final argument should be one of the following:

CYG_FLAG_WAITMODE_AND

The call tocyg_flag_wait will block until all the specified event bits are set. The event flag is not cleared
when the wait succeeds, in other words all the bits remain set.

CYG_FLAG_WAITMODE_OR

The call will block until at least one of the specified event bits is set. The event flag is not cleared on return.

CYG_FLAG_WAITMODE_AND | CYG_FLAG_WAITMODE_CLR

The call will block until all the specified event bits are set, and the entire event flag is cleared when the call
succeeds. Note that if this mode of operation is used then a single event flag cannot be used to store disjoint
sets of events, even though enough bits might be available. Instead each disjoint set of events requires its own
event flag.

CYG_FLAG_WAITMODE_OR | CYG_FLAG_WAITMODE_CLR

The call will block until at least one of the specified event bits is set, and the entire flag is cleared when the
call succeeds.

A call to cyg_flag_wait normally blocks until the required condition is satisfied. It will return the value of

the event flag at the point that the operation succeeded, which may be a superset of the requested events. If
cyg_thread_release is used to unblock a thread that is currently in a wait operationgyteflag_wait call

will instead return 0.

cyg_flag_timed_wait is a variant ofcyg_flag_wait which adds a timeout: the wait operation must succeed
within the specified number of ticks, or it will fail with a return value ot@g_flag_poll is a non-blocking vari-
ant: if the wait operation can succeed immediately it actsdikeflag_wait , otherwise it returns immediately
with a value of 0.

cyg_flag_setbits is called by a producer thread or from inside a DSR when an event occurs. The specified bits
are or'd into the current event flag value. This may cause a waiting thread to be woken up, if its condition is now
satisfied.

cyg_flag_maskbits can be used to clear one or more bits in the event flag. This can be called from a producer
when a particular condition is no longer satisfied, for example when the user is no longer pressing a particular
button. It can also be used by a consumer threatlrit_FLAG_WAITMODE_CLRas not used as part of the wait
operation, to indicate that some but not all of the active events have been consumed. If there are multiple consumer
threads performing wait operations without usitigG_FLAG_WAITMODE_CItRen typically some additional syn-
chronization such as a mutex is needed to prevent multiple threads consuming the same event.

Two additional functions are provided to query the current state of an eventc§i@dlag peek returns the

current value of the event flag, amgg_flag_waiting can be used to find out whether or not there are any
threads currently blocked on the event flag. Both of these functions must be used with care because other threads
may be operating on the event flag.

80

Event Flags

Valid contexts

cyg_flag_init is typically called during system initialization but may also be called in thread context. The same
applies tocyg_flag_destroy . cyg_flag_wait andcyg_flag_timed_wait may only be called from thread
context. The remaining functions may be called from thread or DSR context.

81

Event Flags

82

Spinlocks

Name

cyg_spinlock_create, cyg_spinlock destroy, cyg_spinlock_spin,
cyg_spinlock_clear, cyg_spinlock_test, cyg_spinlock_spin_intsave,

cyg_spinlock_clear_intsave — Low-level Synchronization Primitive

Synopsis

#include <cyg/kernel/kapi.h >

void cyg_spinlock_init (cyg_spinlock_t* lock , cyg_bool_t locked);

void cyg_spinlock_destroy (cyg_spinlock_t* lock);

void cyg_spinlock_spin (cyg_spinlock_t* lock);

void cyg_spinlock_clear (cyg_spinlock_t* lock);

cyg_bool_t cyg_spinlock_try (cyg_spinlock_t* lock);

cyg_bool_t cyg_spinlock_test (cyg_spinlock_t* lock);

void cyg_spinlock_spin_intsave (cyg_spinlock_t* lock , cyg_addrword_t* istate);
void cyg_spinlock_clear_intsave (cyg_spinlock_t* lock , cyg_addrword_t istate);
Description

Spinlocks provide an additional synchronization primitive for applications running on SMP systems. They operate

at a lower level than the other primitives such as mutexes, and for most purposes the higher-level primitives should
be preferred. However there are some circumstances where a spinlock is appropriate, especially when interrupt
handlers and threads need to share access to hardware, and on SMP systems the kernel implementation itself
depends on spinlocks.

Essentially a spinlock is just a simple flag. When code tries to claim a spinlock it checks whether or not the flag

is already set. If not then the flag is set and the operation succeeds immediately. The exact implementation of this
is hardware-specific, for example it may use a test-and-set instruction to guarantee the desired behaviour even if
several processors try to access the spinlock at the exact same time. If it is not possible to claim a spinlock then
the current thead spins in a tight loop, repeatedly checking the flag until it is clear. This behaviour is very different
from other synchronization primitives such as mutexes, where contention would cause a thread to be suspended.
The assumption is that a spinlock will only be held for a very short time. If claiming a spinlock could cause the
current thread to be suspended then spinlocks could not be used inside interrupt handlers, which is not acceptable.

This does impose a constraint on any code which uses spinlocks. Specifically it is important that spinlocks are held
only for a short period of time, typically just some dozens of instructions. Otherwise another processor could be
blocked on the spinlock for a long time, unable to do any useful work. It is also important that a thread which
owns a spinlock does not get preempted because that might cause another processor to spin for a whole timeslice
period, or longer. One way of achieving this is to disable interrupts on the current processor, and the function
cyg_spinlock_spin_intsave is provided to facilitate this.

Spinlocks should not be used on single-processor systems. Consider a high priority thread which attempts to claim
a spinlock already held by a lower priority thread: it will just loop forever and the lower priority thread will never

83

Spinlocks

84

get another chance to run and release the spinlock. Even if the two threads were running at the same priority, the
one attempting to claim the spinlock would spin until it was timesliced and a lot of cpu time would be wasted. If an
interrupt handler tried to claim a spinlock owned by a thread, the interrupt handler would loop forever. Therefore
spinlocks are only appropriate for SMP systems where the current owner of a spinlock can continue running on a
different processor.

Before a spinlock can be used it must be initialized by a cadltp spinlock_init . This takes two arguments,
a pointer to acyg_spinlock_t data structure, and a flag to specify whether the spinlock starts off locked or
unlocked. If a spinlock is no longer required then it can be destroyed by a cgll_tepinlock_destroy

There are two routines for claiming a spinloeyy_spinlock_spin andcyg_spinlock_spin_intsave . The

former can be used when it is known the current code will not be preempted, for example because it is running in
an interrupt handler or because interrupts are disabled. The latter will disable interrupts in addition to claiming the
spinlock, so is safe to use in all circumstances. The previous interrupt state is returned via the second argument,
and should be used in a subsequent cadytp spinlock_clear_intsave

Similarly there are two routines for releasing a spinlockeyg_spinlock_clear and
cyg_spinlock_clear_intsave . Typically the former will be used if the spinlock was claimed by a call to
cyg_spinlock_spin , and the latter whetyg_spinlock_intsave was used.

There are two additional routinesyg_spinlock_try is a non-blocking version ofyg_spinlock_spin sif

possible the lock will be claimed and the function will retwmue ; otherwise the function will return immediately

with failure. cyg_spinlock_test can be used to find out whether or not the spinlock is currently locked. This
function must be used with care because, especially on a multiprocessor system, the state of the spinlock can
change at any time.

Spinlocks should only be held for a short period of time, and attempting to claim a spinlock will never cause a
thread to be suspended. This means that there is no need to worry about priority inversion problems, and concepts
such as priority ceilings and inheritance do not apply.

Valid contexts

All of the spinlock functions can be called from any context, including ISR and DSR context. Typically
cyg_spinlock_init is only called during system initialization.

Scheduler Control

Name

cyg_scheduler_start, cyg_scheduler_lock, cyg_scheduler_unlock,

cyg_scheduler_safe _lock, cyg_scheduler_read_lock — Control the state of the scheduler
Synopsis

#include <cyg/kernel/kapi.h >

void cyg_scheduler_start (void);

void cyg_scheduler_lock (void);
void cyg_scheduler_unlock (void);
cyg_ucount32 cyg_scheduler_read_lock (void);

Description

cyg_scheduler_start should only be called once, to mark the end of system initialization. In typical configu-
rations it is called automatically by the system startup, but some applications may bypass the standard startup in
which caseyg_scheduler_start will have to be called explicitly. The call will enable system interrupts, allow-

ing I/0 operations to commence. Then the scheduler will be invoked and control will be transferred to the highest
priority runnable thread. The call will never return.

The various data structures inside the eCos kernel must be protected against concurrent updates. Consider a call
to cyg_semaphore_post which causes a thread to be woken up: the semaphore data structure must be updated to
remove the thread from its queue; the scheduler data structure must also be updated to mark the thread as runnable;
it is possible that the newly runnable thread has a higher priority than the current one, in which case preemption
is required. If in the middle of the semaphore post call an interrupt occurred and the interrupt handler tried to
manipulate the same data structures, for example by making another thread runnable, then it is likely that the
structures will be left in an inconsistent state and the system will fail.

To prevent such problems the kernel contains a special lock known as the scheduler lock. A typical kernel function
such agyg_semaphore_post will claim the scheduler lock, do all its manipulation of kernel data structures, and
then release the scheduler lock. The current thread cannot be preempted while it holds the scheduler lock. If an
interrupt occurs and a DSR is supposed to run to signal that some event has occurred, that DSR is postponed until
the scheduler unlock operation. This prevents concurrent updates of kernel data structures.

The kernel exports three routines for manipulating the scheduler dggkscheduler_lock can be called to

claim the lock. On return it is guaranteed that the current thread will not be preempted, and that no other code
is manipulating any kernel data structuregy_scheduler_unlock can be used to release the lock, which may
cause the current thread to be preemptgg. scheduler_read_lock can be used to query the current state of

the scheduler lock. This function should never be needed because well-written code should always know whether
or not the scheduler is currently locked, but may prove useful during debugging.

The implementation of the scheduler lock involves a simple counter. Code capgcatiheduler_lock multiple
times, causing the counter to be incremented each time, as lotyg asheduler_unlock is called the same

85

Scheduler Control

86

number of times. This behaviour is different from mutexes where an attempt by a thread to lock a mutex multiple
times will result in deadlock or an assertion failure.

Typical application code should not use the scheduler lock. Instead other synchronization primitives such as mu-
texes and semaphores should be used. While the scheduler is locked the current thread cannot be preempted, so any
higher priority threads will not be able to run. Also no DSRs can run, so device drivers may not be able to service

I/0 requests. However there is one situation where locking the scheduler is appropriate: if some data structure
needs to be shared between an application thread and a DSR associated with some interrupt source, the thread can
use the scheduler lock to prevent concurrent invocations of the DSR and then safely manipulate the structure. It is
desirable that the scheduler lock is held for only a short period of time, typically some tens of instructions. In ex-
ceptional cases there may also be some performance-critical code where it is more appropriate to use the scheduler
lock rather than a mutex, because the former is more efficient.

Valid contexts

cyg_scheduler_start can only be called during system initialization, since it marks the end of that phase. The
remaining functions may be called from thread or DSR context. Locking the scheduler from inside the DSR has
no practical effect because the lock is claimed automatically by the interrupt subsystem before running DSRs, but
allows functions to be shared between normal thread code and DSRs.

Interrupt Handling

Name

cyg_interrupt_create, cyg_interrupt_delete, cyg_interrupt_attach,
cyg_interrupt_detach, cyg_interrupt_configure, cyg_interrupt_acknowledge,
cyg_interrupt_enable, cyg_interrupt_disable, cyg_interrupt_mask,
cyg_interrupt_mask_intunsafe, cyg_interrupt_unmask,
cyg_interrupt_unmask_intunsafe, cyg_interrupt_set cpu,
cyg_interrupt_get_cpu, cyg_interrupt_get vsr, cyg_interrupt_set_vsr
interrupt handlers

Synopsis

#include <cyg/kernel/kapi.h >

void cyg_interrupt_create (cyg_vector_t vector , cyg_priority t priority
data , cyg ISR_t* isr , cyg_DSR_t* dsr, cyg_handle_t* handle , cyg_interrupt*
void cyg_interrupt_delete (cyg_handle_t interrupt);

void cyg_interrupt_attach (cyg_handle_t interrupt);

void cyg_interrupt_detach (cyg_handle_t interrupt);

void cyg_interrupt_configure (cyg_vector_t vector , cyg_bool_t level
void cyg_interrupt_acknowledge (cyg_vector_t vector);

void cyg_interrupt_disable (void);

void cyg_interrupt_enable (void);

void cyg_interrupt_mask (cyg_vector_t vector);

void cyg_interrupt_mask_intunsafe (cyg_vector_t vector);

void cyg_interrupt_unmask (cyg_vector_t vector);

void cyg_interrupt_unmask_intunsafe (cyg_vector_t vector);

void cyg_interrupt_set_cpu (cyg_vector_t vector , cyg_cpu_t cpu);
cyg_cpu_t cyg_interrupt_get_cpu (cyg_vector_t vector);

void cyg_interrupt_get_vsr (cyg_vector_t vector , cyg VSR _t** wvsr);
void cyg_interrupt_set_vsr (cyg_vector_t vector , cyg VSR _t* vsr);
Description

— Manage

, cyg_addrword_t

):

up);

The kernel provides an interface for installing interrupt handlers and controlling when interrupts occur. This func-
tionality is used primarily by eCos device drivers and by any application code that interacts directly with hardware.
However in most cases it is better to avoid using this kernel functionality directly, and instead the device driver
API provided by the common HAL package should be used. Use of the kernel package is optional, and some ap-
plications such as RedBoot work with no need for multiple threads or synchronization primitives. Any code which
calls the kernel directly rather than the device driver API will not function in such a configuration. When the kernel
package is present the device driver API is implementettiefine ’s to the equivalent kernel calls, otherwise it

is implemented inside the common HAL package. The latter implementation can be simpler than the kernel one

because there is no need to consider thread preemption and similar issues.

87

Interrupt Handling

The exact details of interrupt handling vary widely between architectures. The functionality provided by the kernel
abstracts away from many of the details of the underlying hardware, thus simplifying application development.
However this is not always successful. For example, if some hardware does not provide any support at all for
masking specific interrupts then calliegg_interrupt_mask may not behave as intended: instead of masking

just the one interrupt source it might disable all interrupts, because that is as close to the desired behaviour as is
possible given the hardware restrictions. Another possibility is that masking a given interrupt source also affects alll
lower-priority interrupts, but still allows higher-priority ones. The documentation for the appropriate HAL packages
should be consulted for more information about exactly how interrupts are handled on any given hardware. The
HAL header files will also contain useful information.

Interrupt Handlers

Interrupt handlers are created by a caltyg_interrupt_create . This takes the following arguments:

cyg_vector_twector

The interrupt vector, a small integer, identifies the specific interrupt source. The appropriate hardware docu-
mentation or HAL header files should be consulted for details of which vector corresponds to which device.

cyg_priority_tpriority

Some hardware may support interrupt priorities, where a low priority interrupt handler can in turn be inter-
rupted by a higher priority one. Again hardware-specific documentation should be consulted for details about
what the valid interrupt priority levels are.

cyg_addrword_tata

cyg_ISR_ftisr

88

When an interrupt occurs eCos will first call the associated interrupt service routine or ISR, then optionally
a deferred service routine or DSR. THata argument tacyg_interrupt_create will be passed to both
these functions. Typically it will be a pointer to some data structure.

When an interrupt occurs the hardware will transfer control to the appropriate vector service routine or VSR,
which is usually provided by eCos. This performs any appropriate processing, for example to work out exactly
which interrupt occurred, and then as quickly as possible transfers control the installed ISR. An ISR isa C
function which takes the following form:

cyg_uint32
isr_function(cyg_vector_t vector, cyg_addrword_t data)

{
cyg_bool_t dsr_required = O;

return dsr_required ? CYG_ISR_CALL_DSR : CYG_ISR_HANDLED;

The first argument identifies the particular interrupt source, especially useful if there multiple instances of
a given device and a single ISR can be used for several different interrupt vectors. The second argument
is thedata field passed tayg_interrupt_create , usually a pointer to some data structure. The exact
conditions under which an ISR runs will depend partly on the hardware and partly on configuration options.

Interrupt Handling

Interrupts may currently be disabled globally, especially if the hardware does not support interrupt priorities.
Alternatively interrupts may be enabled such that higher priority interrupts are allowed through. The ISR may
be running on a separate interrupt stack, or on the stack of whichever thread was running at the time the
interrupt happened.

A typical ISR will do as little work as possible, just enough to meet the needs of the hardware and then
acknowledge the interrupt by callingyg_interrupt_acknowledge . This ensures that interrupts will be
quickly reenabled, so higher priority devices can be serviced. For some applications there may be one device
which is especially important and whose ISR can take much longer than normal. However eCos device drivers
usually will not assume that they are especially important, so their ISRs will be as short as possible.

The return value of an ISR is normally one©fG_ISR_CALL_DSRor CYG_ISR_HANDLEDThe former indi-
cates that further processing is required at DSR level, and the interrupt handler’s DSR will be run as soon as
possible. The latter indicates that the interrupt has been fully handled and no further effort is required.

An ISR is allowed to make very few kernel calls. It can manipulate the interrupt mask, and on SMP systems
it can use spinlocks. However an ISR must not make higher-level kernel calls such as posting to a semaphore,
instead any such calls must be made from the DSR. This avoids having to disable interrupts throughout the
kernel and thus improves interrupt latency.

cyg_DSR_tdsr

If an interrupt has occurred and the ISR has returned a v@h@ ISR_CALL_DSRthe system will call the
deferred service routine or DSR associated with this interrupt handler. If the scheduler is not currently locked
then the DSR will run immediately. However if the interrupted thread was in the middle of a kernel call and
had locked the scheduler, then the DSR will be deferred until the scheduler is again unlocked. This allows the
DSR to make certain kernel calls safely, for example posting to a semaphore or signalling a condition variable.
A DSR is a C function which takes the following form:

void

dsr_function(cyg_vector_t vector,

cyg_ucount32 count,
cyg_addrword_t data)

The first argument identifies the specific interrupt that has caused the DSR to run. The second argument
indicates the number of these interrupts that have occurred and for which the ISR requested a DSR. Usually
this will be 1, unless the system is suffering from a very heavy load. The third argument dathe field

passed t@yg_interrupt_create

cyg_handle_thandle

The kernel will return a handle to the newly created interrupt handler via this argument. Subsequent operations
on the interrupt handler such as attaching it to the interrupt source will use this handle.

cyg_interrupt*intr

This provides the kernel with an area of memory for holding this interrupt handler and associated data.

89

Interrupt Handling

90

The call to cyg_interrupt_create simply fills in a kernel data structure. A typical next step is to call
cyg_interrupt_attach using the handle returned by the create operation. This makes it possible to have
several different interrupt handlers for a given vector, attaching whichever one is currently appropriate.
Replacing an interrupt handler requires a call dg_interrupt_detach , followed by another call to
cyg_interrupt_attach for the replacement handletyg_interrupt_delete can be used if an interrupt
handler is no longer required.

Some hardware may allow for further control over specific interrupts, for example whether an interrupt is level or
edge triggered. Any such hardware functionality can be accessedaysirigterrupt_configure : thelevel
argument selects between level versus edge triggeredjptrergument selects between high and low level, or
between rising and falling edges.

Usually interrupt handlers are created, attached and configured during system initialization, while global interrupts
are still disabled. On most hardware it will also be necessary tagalinterrupt_unmask , since the sensible
default for interrupt masking is to ignore any interrupts for which no handler is installed.

Controlling Interrupts

eCos provides two ways of controlling whether or not interrupts happen. It is possible to disable and reenable all
interrupts globally, usingyg_interrupt_disable andcyg_interrupt_enable . Typically this works by ma-
nipulating state inside the cpu itself, for example setting a flag in a status register or executing special instructions.
Alternatively it may be possible to mask a specific interrupt source by writing to one or to several interrupt mask
registers. Hardware-specific documentation should be consulted for the exact details of how interrupt masking
works, because a full implementation is not possible on all hardware.

The primary use for these functions is to allow data to be shared between ISRs and other code such as DSRs or
threads. If both a thread and an ISR need to manipulate either a data structure or the hardware itself, there is a
possible conflict if an interrupt happens just when the thread is doing such manipulation. Problems can be avoided
by the thread either disabling or masking interrupts during the critical region. If this critical region requires only

a few instructions then usually it is more efficient to disable interrupts. For larger critical regions it may be more
appropriate to use interrupt masking, allowing other interrupts to occur. There are other uses for interrupt masking.
For example if a device is not currently being used by the application then it may be desirable to mask all interrupts
generated by that device.

There are two functions for masking a specific interrupt souregg_interrupt_mask and
cyg_interrupt_mask_intunsafe . On typical hardware masking an interrupt is not an atomic operation,
so if two threads were to perform interrupt masking operations at the same time there could be problems.
cyg_interrupt_mask disables all interrupts while it manipulates the interrupt mask. In situations where
interrupts are already know to be disablegy_interrupt_mask_intunsafe can be used instead. There are
matching functionsyg_interrupt_unmask andcyg_interrupt_unmask_intsafe

SMP Support

On SMP systems the kernel provides an additional two functions related to interrupt handling.
cyg_interrupt_set_cpu specifies that a particular hardware interrupt should always be handled on one specific
processor in the system. In other words when the interrupt triggers it is only that processor which detects it, and it
is only on that processor that the VSR and ISR will run. If a DSR is requested then it will also run on the same
CPU. The functiorncyg_interrupt_get_cpu can be used to find out which interrupts are handled on which
processor.

Interrupt Handling

VSR Support

When an interrupt occurs the hardware will transfer control to a piece of code known as the VSR, or Vector Service
Routine. By default this code is provided by eCos. Usually it is written in assembler, but on some architectures it
may be possible to implement VSRs in C by specifying an interrupt attribute. Compiler documentation should be
consulted for more information on this. The default eCos VSR will work out which ISR function should process
the interrupt, and set up a C environment suitable for this ISR.

For some applications it may be desirable to replace the default eCos VSR and handle some interrupts directly. This
minimizes interrupt latency, but it requires application developers to program at a lower level. Usually the best way
to write a custom VSR is to copy the existing one supplied by eCos and then make appropriate modifications.
The functioncyg_interrupt_get_vsr can be used to get hold of the current VSR for a given interrupt vector,
allowing it to be restored if the custom VSR is no longer requicggl. interrupt_set_vsr can be used to install

a replacement VSR. Usually thver argument will correspond to an exported label in an assembler source file.

Valid contexts

In a typical configuration interrupt handlers are created and attached during system initialization, and never
detached or deleted. However it is possible to perform these operations at thread level, if desired. Similarly

cyg_interrupt_configure , Cyg_interrupt_set_vsr , and cyg_interrupt_set_cpu are usually called
only during system initialization, but on typical hardware may be called at any tygeinterrupt_get_vsr
andcyg_interrupt_get_cpu may be called at any time.

The functions for enabling, disabling, masking and unmasking interrupts can be called in any context, when appro-
priate. It is the responsibility of application developers to determine when the use of these functions is appropriate.

91

Interrupt Handling

92

Kernel Real-time Characterization

Name

tm_basic — Measure the performance of the eCos kernel

Description

When building a real-time system, care must be taken to ensure that the system will be able to perform properly
within the constraints of that system. One of these constraints may be how fast certain operations can be performed.
Another might be how deterministic the overall behavior of the system is. Lastly the memory footprint (size) and
unit cost may be important.

One of the major problems encountered while evaluating a system will be how to compare it with possible alterna-
tives. Most manufacturers of real-time systems publish performance numbers, ostensibly so that users can compare
the different offerings. However, what these numbers mean and how they were gathered is often not clear. The
values are typically measured on a particular piece of hardware, so in order to truly compare, one must obtain
measurements for exactly the same set of hardware that were gathered in a similar fashion.

Two major items need to be present in any given set of measurements. First, the raw values for the various opera-
tions; these are typically quite easy to measure and will be available for most systems. Second, the determinacy of
the numbers; in other words how much the value might change depending on other factors within the system. This
value is affected by a number of factors: how long interrupts might be masked, whether or not the function can
be interrupted, even very hardware-specific effects such as cache locality and pipeline usage. It is very difficult to
measure the determinacy of any given operation, but that determinacy is fundamentally important to proper overall
characterization of a system.

In the discussion and numbers that follow, three key measurements are provided. The first measurement is an
estimate of the interrupt latency: this is the length of time from when a hardware interrupt occurs until its Inter-
rupt Service Routine (ISR) is called. The second measurement is an estimate of overall interrupt overhead: this
is the length of time average interrupt processing takes, as measured by the real-time clock interrupt (other in-
terrupt sources will certainly take a different amount of time, but this data cannot be easily gathered). The third
measurement consists of the timings for the various kernel primitives.

Methodology

Key operations in the kernel were measured by using a simple test program which exercises the various kernel
primitive operations. A hardware timer, normally the one used to drive the real-time clock, was used for these
measurements. In most cases this timer can be read with quite high resolution, typically in the range of a few
microseconds. For each measurement, the operation was repeated a number of times. Time stamps were obtained
directly before and after the operation was performed. The data gathered for the entire set of operations was then
analyzed, generating average (mean), maximum and minimum values. The sample variance (a measure of how
close most samples are to the mean) was also calculated. The cost of obtaining the real-time clock timer values was
also measured, and was subtracted from all other times.

Most kernel functions can be measured separately. In each case, a reasonable number of iterations are performed.
Where the test case involves a kernel object, for example creating a task, each iteration is performed on a different
object. There is also a set of tests which measures the interactions between multiple tasks and certain kernel
primitives. Most functions are tested in such a way as to determine the variations introduced by varying numbers

93

Kernel Real-time Characterization

94

of objects in the system. For example, the mailbox tests measure the cost of a 'peek’ operation when the mailbox
is empty, has a single item, and has multiple items present. In this way, any effects of the state of the object or how
many items it contains can be determined.

There are a few things to consider about these measurements. Firstly, they are quite micro in scale and only measure
the operation in question. These measurements do not adequately describe how the timings would be perturbed in
a real system with multiple interrupting sources. Secondly, the possible aberration incurred by the real-time clock
(system heartbeat tick) is explicitly avoided. Virtually all kernel functions have been designed to be interruptible.
Thus the times presented are typical, but best case, since any particular function may be interrupted by the clock
tick processing. This number is explicitly calculated so that the value may be included in any deadline calculations
required by the end user. Lastly, the reported measurements were obtained from a system built with all options
at their default values. Kernel instrumentation and asserts are also disabled for these measurements. Any number
of configuration options can change the measured results, sometimes quite dramatically. For example, mutexes
are using priority inheritance in these measurements. The numbers will change if the system is built with priority
inheritance on mutex variables turned off.

The final value that is measured is an estimate of interrupt latency. This particular value is not explicitly calculated

in the test program used, but rather by instrumenting the kernel itself. The raw number of timer ticks that elapse
between the time the timer generates an interrupt and the start of the timer ISR is kept in the kernel. These values
are printed by the test program after all other operations have been tested. Thus this should be a reasonable estimate
of the interrupt latency over time.

Using these Measurements

These measurements can be used in a number of ways. The most typical use will be to compare different real-
time kernel offerings on similar hardware, another will be to estimate the cost of implementing a task using eCos
(applications can be examined to see what effect the kernel operations will have on the total execution time).
Another use would be to observe how the tuning of the kernel affects overall operation.

Influences on Performance

A number of factors can affect real-time performance in a system. One of the most common factors, yet most
difficult to characterize, is the effect of device drivers and interrupts on system timings. Different device drivers
will have differing requirements as to how long interrupts are suppressed, for example. The eCos system has been
designed with this in mind, by separating the management of interrupts (ISR handlers) and the processing required
by the interrupt (DSR—Deferred Service Routine— handlers). However, since there is so much variability here,
and indeed most device drivers will come from the end users themselves, these effects cannot be reliably measured.
Attempts have been made to measure the overhead of the single interrupt that eCos relies on, the real-time clock
timer. This should give you a reasonable idea of the cost of executing interrupt handling for devices.

Measured Items

This section describes the various tests and the numbers presented. All tests use the C kernel API (available by way
of cyg/kernel/kapi.h). There is a single main thread in the system that performs the various tests. Additional
threads may be created as part of the testing, but these are short lived and are destroyed between tests unless
otherwise noted. The terminology “lower priority” means a priority that is less important, not necessarily lower in

Kernel Real-time Characterization

numerical value. A higher priority thread will run in preference to a lower priority thread even though the priority
value of the higher priority thread may be numerically less than that of the lower priority thread.

Thread Primitives

Create thread

This test measures tlegg_thread_create() call. Each call creates a totally new thread. The set of threads
created by this test will be reused in the subsequent thread primitive tests.

Yield thread
This test measures thgg_thread_yield() call. For this test, there are no other runnable threads, thus the
test should just measure the overhead of trying to give up the CPU.

Suspend [suspended] thread

This test measures tlgg_thread_suspend() call. A thread may be suspended multiple times; each thread
is already suspended from its initial creation, and is suspended again.

Resume thread

This test measures thgg_thread_resume() call. All of the threads have a suspend count of 2, thus this
call does not make them runnable. This test just measures the overhead of resuming a thread.

Set priority

This test measures tlgg_thread_set_priority() call. Each thread, currently suspended, has its priority
set to a new value.

Get priority

This test measures thgg_thread_get_priority() call.

Kill [suspended] thread
This test measures tlgg_thread_kill() call. Each thread in the set is killed. All threads are known to be
suspended before being killed.
Yield [no other] thread
This test measures thecyg thread_yield() call again. This is to demonstrate that the
cyg_thread_yield() call has a fixed overhead, regardless of whether there are other threads in the system.
Resume [suspended low priority] thread

This test measures thwg_thread_resume() call again. In this case, the thread being resumed is lower
priority than the main thread, thus it will simply become ready to run but not be granted the CPU. This test
measures the cost of making a thread ready to run.

Resume [runnable low priority] thread

This test measures thgg_thread_resume() call again. In this case, the thread being resumed is lower
priority than the main thread and has already been made runnable, so in fact the resume call has no effect.

95

Kernel Real-time Characterization

Suspend [runnable] thread
This test measures thgg_thread_suspend() call again. In this case, each thread has already been made
runnable (by previous tests).

Yield [only low priority] thread
This test measures thugg_thread_yield() call. In this case, there are many other runnable threads, but
they are all lower priority than the main thread, thus no thread switches will take place.

Suspend [runnable-not runnable] thread
This test measures thgg_thread_suspend() call again. The thread being suspended will become non-
runnable by this action.

Kill [runnable] thread
This test measures thegyg_thread_kill() call again. In this case, the thread being killed is currently
runnable, but lower priority than the main thread.

Resume [high priority] thread

This test measures thgg_thread_resume() call. The thread being resumed is higher priority than the

main thread, thus a thread switch will take place on each call. In fact there will be two thread switches; one to

the new higher priority thread and a second back to the test thread. The test thread exits immediately.
Thread switch

This test attempts to measure the cost of switching from one thread to another. Two equal priority threads are
started and they will each yield to the other for a number of iterations. A time stamp is gathered in one thread
before thecyg_thread_yield() call and after the call in the other thread.

Scheduler Primitives

Scheduler lock

This test measures tlgg_scheduler_lock() call.

Scheduler unlock [0 threads]
This test measures thgg_scheduler_unlock() call. There are no other threads in the system and the
unlock happens immediately after a lock so there will be no pending DSR’s to run.

Scheduler unlock [1 suspended thread]
This test measures thwg_scheduler_unlock() call. There is one other thread in the system which is
currently suspended.

Scheduler unlock [many suspended threads]

This test measures thgg_scheduler_unlock() call. There are many other threads in the system which
are currently suspended. The purpose of this test is to determine the cost of having additional threads in the
system when the scheduler is activated by wayygf scheduler_unlock()

96

Kernel Real-time Characterization

Scheduler unlock [many low priority threads]

This test measures tlegg_scheduler_unlock() call. There are many other threads in the system which are
runnable but are lower priority than the main thread. The purpose of this test is to determine the cost of having
additional threads in the system when the scheduler is activated by wgy etheduler_unlock()

Mutex Primitives

Init mutex

This test measures thgyg_mutex_init() call. A number of separate mutex variables are created. The
purpose of this test is to measure the cost of creating a new mutex and introducing it to the system.

Lock [unlocked] mutex

This test measures thgg_mutex_lock() call. The purpose of this test is to measure the cost of locking a
mutex which is currently unlocked. There are no other threads executing in the system while this test runs.

Unlock [locked] mutex

This test measures tlsgg_mutex_unlock() call. The purpose of this test is to measure the cost of unlocking
a mutex which is currently locked. There are no other threads executing in the system while this test runs.

Trylock [unlocked] mutex

This test measures tlgg_mutex_trylock() call. The purpose of this test is to measure the cost of locking
a mutex which is currently unlocked. There are no other threads executing in the system while this test runs.

Trylock [locked] mutex

This test measures tlgg_mutex_trylock() call. The purpose of this test is to measure the cost of locking
a mutex which is currently locked. There are no other threads executing in the system while this test runs.

Destroy mutex

This test measures tlagg_mutex_destroy() call. The purpose of this test is to measure the cost of deleting
a mutex from the system. There are no other threads executing in the system while this test runs.

Unlock/Lock mutex

This test attempts to measure the cost of unlocking a mutex for which there is another higher priority thread
waiting. When the mutex is unlocked, the higher priority waiting thread will immediately take the lock. The
time from when the unlock is issued until after the lock succeeds in the second thread is measured, thus giving
the round-trip or circuit time for this type of synchronizer.

Mailbox Primitives

Create mbox

This test measures tligg_mbox_create() call. A number of separate mailboxes is created. The purpose of
this test is to measure the cost of creating a new mailbox and introducing it to the system.

97

Kernel Real-time Characterization

Peek [empty] mbox
This test measures tlegg_mbox_peek() call. An attempt is made to peek the value in each mailbox, which
is currently empty. The purpose of this test is to measure the cost of checking a mailbox for a value without
blocking.

Put [first] mbox
This test measures tlgg_mbox_put() call. One item is added to a currently empty mailbox. The purpose
of this test is to measure the cost of adding an item to a mailbox. There are no other threads currently waiting
for mailbox items to arrive.

Peek [1 msg] mbox
This test measures tlgg_mbox_peek() call. An attempt is made to peek the value in each mailbox, which
contains a single item. The purpose of this test is to measure the cost of checking a mailbox which has data to
deliver.

Put [second] mbox

This test measures tlgg_mbox_put() call. A second item is added to a mailbox. The purpose of this test
is to measure the cost of adding an additional item to a mailbox. There are no other threads currently waiting
for mailbox items to arrive.

Peek [2 msgs] mbox

This test measures tlegg_mbox_peek() call. An attempt is made to peek the value in each mailbox, which
contains two items. The purpose of this test is to measure the cost of checking a mailbox which has data to
deliver.
Get [first] mbox
This test measures tlhgg_mbox_get() call. The first item is removed from a mailbox that currently contains
two items. The purpose of this test is to measure the cost of obtaining an item from a mailbox without blocking.
Get [second] mbox
This test measures tlegg_mbox_get() call. The last item is removed from a mailbox that currently contains
one item. The purpose of this test is to measure the cost of obtaining an item from a mailbox without blocking.
Tryput [first] mbox
This test measures thgg_mbox_tryput() call. A single item is added to a currently empty mailbox. The
purpose of this test is to measure the cost of adding an item to a mailbox.
Peek item [non-empty] mbox
This test measures tlegg_mbox_peek_item() call. A single item is fetched from a mailbox that contains a
single item. The purpose of this test is to measure the cost of obtaining an item without disturbing the mailbox.
Tryget [non-empty] mbox

This test measures thyg_mbox_tryget() call. A single item is removed from a mailbox that contains
exactly one item. The purpose of this test is to measure the cost of obtaining one item from a non-empty
mailbox.

98

Kernel Real-time Characterization

Peek item [empty] mbox

This test measures thgg_mbox_peek_item() call. An attempt is made to fetch an item from a mailbox
that is empty. The purpose of this test is to measure the cost of trying to obtain an item when the mailbox is
empty.

Tryget [empty] mbox

This test measures tlegg_mbox_tryget() call. An attempt is made to fetch an item from a mailbox that is
empty. The purpose of this test is to measure the cost of trying to obtain an item when the mailbox is empty.

Waiting to get mbox

This test measures tlvgg_mbox_waiting_to_get() call. The purpose of this test is to measure the cost of
determining how many threads are waiting to obtain a message from this mailbox.

Waiting to put mbox

This test measures tlegg_mbox_waiting_to_put() call. The purpose of this test is to measure the cost of
determining how many threads are waiting to put a message into this mailbox.

Delete mbox

This test measures tlagg_mbox_delete() call. The purpose of this test is to measure the cost of destroying
a mailbox and removing it from the system.

Put/Get mbox

In this round-trip test, one thread is sending data to a mailbox that is being consumed by another thread. The
time from when the data is put into the mailbox until it has been delivered to the waiting thread is measured.
Note that this time will contain a thread switch.

Semaphore Primitives

Init semaphore

This test measures thgg_semaphore_init() call. A number of separate semaphore objects are created
and introduced to the system. The purpose of this test is to measure the cost of creating a new semaphore.

Post [0] semaphore

This test measures thgg_semaphore_post() call. Each semaphore currently has a value of 0 and there
are no other threads in the system. The purpose of this test is to measure the overhead cost of posting to a
semaphore. This cost will differ if there is a thread waiting for the semaphore.

Wait [1] semaphore

This test measures thgg_semaphore_wait() call. The semaphore has a current value of 1 so the call is
non-blocking. The purpose of the test is to measure the overhead of “taking” a semaphore.

Trywait [0] semaphore

This test measures thgg_semaphore_trywait() call. The semaphore has a value of 0 when the call is
made. The purpose of this test is to measure the cost of seeing if a semaphore can be “taken” without blocking.
In this case, the answer would be no.

99

Kernel Real-time Characterization

Trywait [1] semaphore
This test measures thgg_semaphore_trywait() call. The semaphore has a value of 1 when the call is
made. The purpose of this test is to measure the cost of seeing if a semaphore can be “taken” without blocking.
In this case, the answer would be yes.

Peek semaphore
This test measures thgg_semaphore_peek() call. The purpose of this test is to measure the cost of ob-
taining the current semaphore count value.

Destroy semaphore
This test measures thgg_semaphore_destroy() call. The purpose of this test is to measure the cost of
deleting a semaphore from the system.

Post/Wait semaphore

In this round-trip test, two threads are passing control back and forth by using a semaphore. The time from
when one thread caltyg_semaphore_post() until the other thread completes ig_semaphore_wait()
is measured. Note that each iteration of this test will involve a thread switch.

Counters

Create counter
This test measures tlegg_counter_create() call. A number of separate counters are created. The purpose
of this test is to measure the cost of creating a new counter and introducing it to the system.

Get counter value

This test measures tlegg_counter_current_value() call. The current value of each counter is obtained.

Set counter value

This test measures thgg_counter_set_value() call. Each counter is set to a new value.

Tick counter

This test measures tlgg_counter_tick() call. Each counter is “ticked” once.

Delete counter

This test measures thgg_counter_delete() call. Each counter is deleted from the system. The purpose
of this test is to measure the cost of deleting a counter object.

Alarms

Create alarm

This test measures tlogg_alarm_create() call. A number of separate alarms are created, all attached to the
same counter object. The purpose of this test is to measure the cost of creating a new counter and introducing
it to the system.

100

Kernel Real-time Characterization

Initialize alarm

This test measures tlgg_alarm_initialize() call. Each alarm is initialized to a small value.

Disable alarm

This test measures tlegg_alarm_disable() call. Each alarm is explicitly disabled.

Enable alarm

This test measures tlegg_alarm_enable() call. Each alarm is explicitly enabled.

Delete alarm

This test measures thyg_alarm_delete() call. Each alarm is destroyed. The purpose of this test is to
measure the cost of deleting an alarm and removing it from the system.

Tick counter [1 alarm]

This test measures tlgg_counter_tick() call. A counter is created that has a single alarm attached to it.
The purpose of this test is to measure the cost of “ticking” a counter when it has a single attached alarm. In
this test, the alarm is not activated (fired).

Tick counter [many alarms]

This test measures thgg_counter_tick() call. A counter is created that has multiple alarms attached to
it. The purpose of this test is to measure the cost of “ticking” a counter when it has many attached alarms. In
this test, the alarms are not activated (fired).

Tick & fire counter [1 alarm]

This test measures tlgg_counter_tick() call. A counter is created that has a single alarm attached to it.
The purpose of this test is to measure the cost of “ticking” a counter when it has a single attached alarm. In
this test, the alarm is activated (fired). Thus the measured time will include the overhead of calling the alarm
callback function.

Tick & fire counter [many alarms]

This test measures tlgg_counter_tick() call. A counter is created that has multiple alarms attached to

it. The purpose of this test is to measure the cost of “ticking” a counter when it has many attached alarms.
In this test, the alarms are activated (fired). Thus the measured time will include the overhead of calling the
alarm callback function.

Alarm latency [0 threads]

This test attempts to measure the latency in calling an alarm callback function. The time from the clock
interrupt until the alarm function is called is measured. In this test, there are no threads that can be run, other
than the system idle thread, when the clock interrupt occurs (all threads are suspended).

Alarm latency [2 threads]

This test attempts to measure the latency in calling an alarm callback function. The time from the clock inter-
rupt until the alarm function is called is measured. In this test, there are exactly two threads which are running
when the clock interrupt occurs. They are simply passing back and forth by wayaytthieread_yield()

call. The purpose of this test is to measure the variations in the latency when there are executing threads.

101

Kernel Real-time Characterization

Alarm latency [many threads]

This test attempts to measure the latency in calling an alarm callback function. The time from the clock inter-
rupt until the alarm function is called is measured. In this test, there are a number of threads which are running
when the clock interrupt occurs. They are simply passing back and forth by wayaytithieread_yield()

call. The purpose of this test is to measure the variations in the latency when there are many executing threads.

102

Il. RedBoot™ User’s Guide

ciii

Kernel Real-time Characterization

Cciv

Chapter 1. Getting Started with RedBoot

RedBoot™ is an acronym for "Red Hat Embedded Debug and Bootstrap”, and is the standard embedded system
debug/bootstrap environment from Red Hat, replacing the previous generation of debug firmware: CygMon and
GDB stubs. It provides a complete bootstrap environment for a range of embedded operating systems, such as em-
bedded Linux™ and eCos™, and includes facilities such as network downloading and debugging. It also provides
a simple flash file system for boot images.

RedBoot provides a wide set of tools for downloading and executing programs on embedded target systems, as
well as tools for manipulating the target system’s environment. It can be used for both product development (debug
support) and for end product deployment (flash and network booting).

Here are some highlights of RedBoot’s capabilities:

+ Boot scripting support

- Simple command line interface for RedBoot configuration and management, accessible via serial (terminal) or
Ethernet (telnet)

. Integrated GDB stubs for connection to a host-based debugger via serial or ethernet. (Ethernet connectivity is
limited to local network only)

- Attribute Configuration - user control of aspects such as system time and date (if applicable), default Flash image
to boot from, default failsafe image, static IP address, etc.

« Configurable and extensible, specifically adapted to the target environment

« Network bootstrap support including setup and download, via BOOTP, DHCP and TFTP
« X/YModem support for image download via serial

+ Power On Self Test

Although RedBoot is derived from eCos, it may be used as a generalized system debug and bootstrap control
software for any embedded system and any operating system. For example, with appropriate additions, RedBoot
could replace the commonly used BIOS of PC (and certain other) architectures. Red Hat is currently installing
RedBoot on all embedded platforms as a standard practice, and RedBoot is now generally included as part of all
Red Hat Embedded Linux and eCos ports. Users who specifically wish to use RedBoot with the eCos operating
system should refer to th@etting Started with eCadocument, which provides information about the portability

and extendability of RedBoot in an eCos environment.

More information about RedBoot on the web

The RedBoot Net Distribution web site (http://sources.redhat.com/redboot/) contains downloadable sources and
documentation for all publically released targets, including the latest features and updates.

Installing RedBoot

To install the RedBoot package, follow the procedures detailed in the accompanying README.

Although there are other possible configurations, RedBoot is usually run from the target platform’s flash boot
sector or boot ROM, and is designed to run when your system is initially powered on. The method used to install

Chapter 1. Getting Started with RedBoot

the RedBoot image into non-volatile storage varies from platform to platform. In general, it requires that the image
be programmed into flash in situ or programmed into the flash or ROM using a device programmer. In some cases
this will be done at manufacturing time; the platform being delivered with RedBoot already in place. In other cases,
you will have to program RedBoot into the appropriate device(s) yourself. Installing to flash in situ may require
special cabling or interface devices and software provided by the board manufacturer. The details of this installation
process for a given platform will be found in Installation and Testing. Once installed, user-specific configuration
options may be applied, using tfenfig command, providing that persistent data storage in flash is present in the
relevant RedBoot version. Sdee Section calle€onfiguring the RedBoot Environment details.

User Interface

RedBoot provides a command line user interface (CLI). At the minimum, this interface is normally available on
a serial port on the platform. If more than one serial interface is available, RedBoot is normally configured to try
to use any one of the ports for the CLI. Once command input has been received on one port, that port is used
exclusively until the board is reset or the channel is manually changed by the user. If the platform has networking
capabilities, the RedBoot CLI is also accessible usingtéhet access protocol. By default, RedBoot runs
telnet on port TCP/9000, but this is configurable and/or settable by the user.

RedBoot also contains a set of GDB "stubs", consisting of code which supports the GDB remote protocol. GDB
stub mode is automatically invoked when the '$’ character appears anywhere on a command line unless escaped
using the '\’ character. The platform will remain in GDB stub mode until explicitly disconnected (via the GDB
protocol). The GDB stub mode is available regardless of the connection method; either serial or network. Note that
if a GDB connection is made via the network, then special care must be taken to preserve that connection when
running user code. eCos contains special network sharing code to allow for this situation, and can be used as a
model if this methodology is required in other OS environments.

RedBoot Editing Commands

RedBoot uses the following line editing commands.

NOTE: In this description, “A means the character formed by typing the letter “A” while holding down the control
key.

- Delete (Ox7F) orBackspace (0x08) erases the character to the left of the cursor.
« “A moves the cursor (insertion point) to the beginning of the line.

» "K erases all characters on the line from the cursor to the end.

+ E positions the cursor to the end of the line.

- "D erases the character under the cursor.

« “F moves the cursor one character to the right.

- "B moves the cursor one character to the left.

Chapter 1. Getting Started with RedBoot

« P replaces the current line by a previous line from the history buffer. A small number of lines can be kept as
history. Using *P (and ~N), the current line can be replaced by any one of the previously typed lines.

« "N replaces the current line by the next line from the history buffer.

In the case of théconfig command, additional editing commands are possible. As data are entered for this com-
mand, the current/previous value will be displayed and the cursor placed at the end of that data. The user may
use the editing keys (above) to move around in the data to modify it as appropriate. Additionally, when certain
characters are entered at the end of the current value, i.e. entered separately, certain behavior is elicited.

+ " (caret) switch to editing the previous item in tfeonfig list. If fconfig edits item A, followed by item B,
pressing * when changing item B, allows you to change item A. This is similar to the up arrow. Note: *P and "N
do not have the same meaning while editiognfig data and should not be used.

- . (period) stop editing any further items. This does not change the current item.

- Return leaves the value for this item unchanged. Currently it is not possible to step through the value for the
start-up script; it must always be retyped.

RedBoot Startup Mode

RedBoot can normally be configured to run in a number of startup modes (or just "'modes" for short), determining
its location of residence and execution:

ROM mode

In this mode, RedBoot both resides and executes from ROM memory (flash or EPROM). This mode is used
when there are limited RAM resources. The flash commands cannot update the region of flash where the
RedBoot image resides. In order to update the RedBoot image in flash, it is necessary to run a RAM mode
instance of RedBoot.

ROMRAM mode

In this mode, RedBoot resides in ROM memory (flash or EPROM), but is copied to RAM memory before it
starts executing. The RAM footprint is larger than for ROM mode, but there are two advantages to make up
for this: it normally runs faster (relevant only on slower boards) and it is able to update the flash region where
the image resides.

RAM mode

In this mode, RedBoot both resides and executes from RAM memory. This is used for updating a primary
ROM mode image in situ and sometimes as part of the RedBoot installation on the board when there’s already
an existing (non-RedBoot) boot monitor available.

You can only use ROM and ROMRAM mode images for booting a board - a RAM mode image cannot run
unless loaded by another ROM monitor. There is no need for this startup mode if a RedBoot ROMRAM mode
image is the primary boot monitor. When this startup mode is programmed into flash (as a convenience as it's
fast to load from flash) it will generally be named as "RedBoot[RAM]" in the FIS directory.

Chapter 1. Getting Started with RedBoot

The chosen mode has influence on flash and RAM resource usagied S=rtion calle®edBoot Resource Usgge
and the procedure of an in situ update of RedBoot in flashCéepter 4.

The startup mode is controlled by the option CYG_HAL_STARTUP which resides in the platform HAL. Some
platforms provide only some of the RAM, ROM, and ROMRAM modes, others provide additional modes.

To see mode of a currently executing RedBoot, issueviision command, which prints the RedBoot banner,
including the startup mode (here ROM):

RedBoot> version

RedBoot(tm) bootstrap and debug environment [ROM]
Non-certified release, version UNKNOWN - built 13:31:57, May 17 2002

RedBoot Resource Usage

RedBoot takes up both flash and RAM resources depending on its startup mode and number of enabled features.
There are also other resources used by RedBoot, such as timers. Platform-specific resources used by RedBoot are
listed in the platform specific parts of this manual.

Both flash and RAM resources used by RedBoot depend to some degree on the features enabled in the RedBoot
configuration. It is possible to reduce in particular the RAM resources used by RedBoot by removing features
that are not needed. Flash resources can also be reduced, but due to the granularity of the flash (the block sizes),
reductions in feature size do not always result in flash resource savings.

Flash Resources

On many platforms, a ROM mode RedBoot image resides in the first flash sectors, working as the board’s primary
boot monitor. On these platforms, it is also normal to reserve a similar amount of flash for a secondary RAM mode
image, which is used when updating the primary ROM mode image.

On other platforms, a ROMRAM mode RedBoot image is used as the primary boot monitor. On these platforms
there is not normally reserved space for a RAM mode RedBoot image, since the ROMRAM mode RedBoot is
capable of updating the primary boot monitor image.

Most platforms also contain a FIS directory (keeping track of available flash space) and a RedBoot config block
(containing RedBoot board configuration data).

To see the amount of reserved flash memory, rurighest command:

RedBoot> fis list

Name FLASH addr Mem addr Length Entry point
RedBoot 0x00000000 0x00000000 0x00020000 0x00000000
RedBoot[RAM] 0x00020000 0x06020000 0x00020000 0x060213C0
RedBoot config 0x0007F000 0x0007F000 0x00001000 0x00000000
FIS directory 0x00070000 0x00070000 0x0000FO00 0x00000000

Chapter 1. Getting Started with RedBoot

To save flash resources, use a ROMRAM mode RedBoot, or if using a ROM mode RedBoot, avoid reserving space
for the RedBoot[RAM] image (this is done by changing the RedBoot configuration) and download the RAM mode
RedBoot whenever it is needed. If the RedBoot image takes up a fraction of an extra flash block, it may be possible
to reduce the image size enough to free this block by removing some features.

RAM Resources

RedBoot reserves RAM space for its run-time data, and such things as CPU exception/interrupt tables. It normally
does so at the bottom of the memory map. It may also reserve space at the top of the memory map for configurable
RedBoot features such as the net stack and zlib decompression support.

To see the actual amount of reserved space, isswethimncommand, which prints the RedBoot banner, including
the RAM usage:

RedBoot> version

RedBoot(tm) bootstrap and debug environment [ROM]
Non-certified release, version UNKNOWN - built 13:31:57, May 17 2002

Platform: FooBar (SH 7615)
Copyright (C) 2000, 2001, 2002, Red Hat, Inc.

RAM: 0x06000000-0x06080000, 0x06012498-0x06061000 available
FLASH: 0x00000000 - 0x00080000, 8 blocks of 0x00010000 bytes each.

To simplify operations that temporarily need data in free memory, the limits of free RAM are also available as
aliases (aligned to the nearest kilo-byte limit). These are named FREEMEMLO and FREEMEMHI, and can be
used in commands like any user defined alias:

RedBoot> load -r -b %{FREEMEMLO} file
Raw file loaded 0x06012800-0x06013e53, assumed entry at 0x06012800

RedBoot> X -b %{FREEMEMHI}
06061000: 86 F5 EB D8 3D 11 51 F2 96 F4 B2 DC 76 76 8F 77 [..=.Q...w.w|
06061010: E6 55 DD DB F3 75 5D 15 EO F3 FC D9 C8 73 1D DA |.U..u].....s.|

To reduce RedBoot's RAM resource usage, use a ROM mode RedBoot. The RedBoot features that use most RAM
are the net stack, the flash support and the gunzip support. These, and other features, can be disabled to reduce the
RAM footprint, but obviously at the cost of lost functionality.

Configuring the RedBoot Environment

Once installed, RedBoot will operate fairly generically. However, there are some features that can be configured
for a particular installation. These depend primarily on whether flash and/or networking support are available. The
remainder of this discussion assumes that support for both of these options is included in RedBoot.

Chapter 1. Getting Started with RedBoot

Target Network Configuration

Each node in a networked system needs to have a unique address. Since the network support in RedBoot is based on
TCP/IP, this address is an IP (Internet Protocol) address. There are two ways for a system to “know” its IP address.
First, it can be stored locally on the platform. This is known as having a static IP address. Second, the system can
use the network itself to discover its IP address. This is known as a dynamic IP address. RedBoot supports this
dynamic IP address mode by use of the BOOTP (a subset of DHCP) protocol. In this case, RedBoot will ask the
network (actually some generic server on the network) for the IP address to use.

NOTE: Currently, RedBoot only supports BOOTP. In future releases, DHCP may also be supported, but such
support will be limited to additional data items, not lease-based address allocation.

The choice of IP address type is made viafttanfig command. Once a selection is made, it will be stored in flash
memory. RedBoot only queries the flash configuration information at reset, so any changes will require restarting
the platform.

Here is an example of the RedBdobnfig command, showing network addressing:

RedBoot> fconfig -I

Run script at boot: false

Use BOOTP for network configuration: false
Local IP address: 192.168.1.29

Default server IP address: 192.168.1.101
DNS server IP address: 192.168.1.1

GDB connection port: 9000

Network debug at boot time: false

In this case, the board has been configured with a static IP address listed as the Local IP address. The default server
IP address specifies which network node to communicate with for TFTP service. This address can be overridden
directly in the TFTP commands.

The DNS server IP address option controls where RedBoot should make DNS lookups. A setting of 0.0.0.0
will disable DNS lookups. The DNS server IP address can also be set at runtime.

If the selection fotuse BOOTP for network configuration had beenrue , these IP addresses would be de-
termined at boot time, via the BOOTP protocol. The final number which needs to be configured, regardless of
IP address selection mode, is #8BB connection port . RedBoot allows for incoming commands on either the
available serial ports or via the network. This port number is the TCP port that RedBoot will use to accept incoming
connections.

These connections can be used for GDB sessions, but they can also be used for generic RedBoot commands. In
particular, it is possible to communicate with RedBoot via the telnet protocol. For example, on Linux®:

% telnet redboot board 9000
Connected to redboot_board
Escape character is V).
RedBoot>

Host Network Configuration

RedBoot may require three different classes of service from a network host:

Chapter 1. Getting Started with RedBoot

- dynamic IP address allocation, using BOOTP
« TFTP service for file downloading
« DNS server for hostname lookups

Depending on the host system, these services may or may not be available or enabled by default. See your system
documentation for more details.

In particular, on Red Hat Linux, neither of these services will be configured out of the box. The following will
provide a limited explanation of how to set them up. These configuration setups must be dane as the host
or server machine.

Enable TFTP on Red Hat Linux 6.2

1. Ensure that you have the tftp-server RPM package installed. By default, this installs the TFTP server in a
disabled state. These steps will enable it:

2. Make sure that the following line is uncommented in the controléilginetd.conf
tftp dgram udp wait root {usr/sbin/tcpd {usr/sbin/in.tftpd

3. Ifitwas necessary to change the line in Step 2, then the inetd server must be restarted, which can be done via
the command:

service inet reload

Enable TFTP on Red Hat Linux 7 (or newer)

1. Ensure that the xinetd RPM is installed.
2. Ensure that the tftp-server RPM is installed.
3. Enable TFTP by means of the following:
/shin/chkconfig tftp on
Reload the xinetd configuration using the command:
/sbin/service xinetd reload

Create the directory /tftpboot using the command
mkdir /tftpboot

NOTE: Under Red Hat 7 you must address files by absolute pathnames, for example: /tftpboot/boot.img
not /boot.img , as you may have done with other implementations. On systems newer than Red Hat 7 (7.1 and
beyond), filenames are once again relative to the /tftpboot directory.

Chapter 1. Getting Started with RedBoot

Enable BOOTP/DHCP server on Red Hat Linux

First, ensure that you have the proper packagep (notdhcpd) installed. The DHCP server provides Dynamic

Host Configuration, that is, IP address and other data to hosts on a network. It does this in different ways. Next,
there can be a fixed relationship between a certain node and the data, based on that node’s unique Ethernet Station
Address (ESA, sometimes called a MAC address). The other possibility is simply to assign addresses that are free.
The sample DHCP configuration file shown does both. Refer to the DHCP documentation for more details.

Example 1-1. Sample DHCP configuration file

--------------- /etc/dhcpd.conf
default-lease-time 600;
max-lease-time 7200;
option subnet-mask 255.255.255.0;
option broadcast-address 192.168.1.255;
option domain-name-servers 198.41.0.4, 128.9.0.107;
option domain-name “bogus.com”;
allow bootp;
shared-network BOGUS {
subnet 192.168.1.0 netmask 255.255.255.0 {
option routers 192.168.1.101;
range 192.168.1.1 192.168.1.254;
}
}
host mbx {
hardware ethernet 08:00:3E:28:79:B8;
fixed-address 192.168.1.20;
filename “/tftpboot/192.168.1.21/zImage”;
default-lease-time -1;
server-name “srvr.bugus.com”;
server-identifier 192.168.1.101;
option host-name “mbx”;

}
Once the DHCP package has been installed and the configuration file set up, type:

service dhcpd start

Enable DNS server on Red Hat Linux

First, ensure that you have the proper RPM packeghjng-nameserver installed. Then change the configura-
tion (in /etc/named.conf) so that thdorwarders ~ point to the primary nameservers for your machine, normally
using the nameservers listed/énc/resolv.conf

Example 1-2. Sampleetc/named.conf for Red Hat Linux 7.x

--------------- /etc/named.conf
/I generated by named-bootconf.pl

options {
directory "/var/named";

/*

Chapter 1. Getting Started with RedBoot

* If there is a firewall between you and nameservers you want
* to talk to, you might need to uncomment the query-source

* directive below. Previous versions of BIND always asked

* questions using port 53, but BIND 8.1 uses an unprivileged

* port by default.
*/
/I query-source address * port 53;

forward first;

forwarders {
212.242.40.3;
212.242.40.51;

k

I

/I a caching only nameserver config

I

/I Uncomment the following for Red Hat Linux 7.2 or above:
/I controls {

1 inet 127.0.0.1 allow { localhost; } keys { rndckey; };
I}
/I include "/etc/rndc.key";
zone "." IN {
type hint;

file "named.ca";

k

zone "localhost" IN {
type master;
file "localhost.zone";
allow-update { none; };
h
zone "0.0.127.in-addr.arpa” IN {
type master;
file "named.local";

allow-update { none; };

h

Make sure the server is started with the command:
service named start

and is started on next reboot with the command

chkconfig named on

Finally, you may wish to changetc/resolv.conf to use127.0.0.1

as the nameserver for your local machine.

Chapter 1. Getting Started with RedBoot

10

RedBoot network gateway

RedBoot cannot communicate with machines on different subnets because it does not support routing. It al-
ways assumes that it can get to an address directly, therefore it always tries to ARP and then send packets di-
rectly to that unit. This means that whatever it talks to must be on the same subnet. If you need to talk to
a host on a different subnet (even if it's on the same ‘wire’), you need to go through an ARP proxy, provid-
ing that there is a Linux box connected to the network which is able to route to the TFTP server. For exam-
ple: /proc/sys/net/ipv4/conf/ <interface> /proxy_arp where<interface> should be replaced with
whichever network interface is directly connected to the board.

Verification

Once your network setup has been configured, perform simple verification tests as follows:

- Reboot your system, to enable the setup, and then try to ‘ping’ the target board from a host.

« Once communication has been established, try to ping a host using the RedBoot ping command - both by IP
address and hostname.

« Try using the RedBoot load command to download a file from a host.

Chapter 2. RedBoot Commands and Examples

Introduction

RedBoot provides three basic classes of commands:

« Program loading and execution
« Flash image and configuration management
+ Miscellaneous commands

Given the extensible and configurable nature of eCos and RedBoot, there may be extended or enhanced sets of
commands available.

The basic format for commands is:

RedBoot> COMMAND [-S]... [-s val]... operand

Commands may require additional information beyond the basic command name. In most cases this additional
information is optional, with suitable default values provided if they are not present.

Format Description Example

-S /A boolean switch; the behavior of | RedBoot> fis init -f
the command will differ, depending
on the presence of the switch. In this
example, thef switch indicates that
a complete initialization of the FIS
data should be performed. There may
be many such switches available for
any given command and any or all |of
them may be present, in any order,

-s val A qualified value; the letter "s" RedBoot> dump -b 0x100000
introduces the value, qualifying it's|-| 0x20

meaning. In the exampleh
0x100000 specifies where the
memory dump should begin. There
may be many such switches
available for any given command
and any or all of them may be
present, in any order.

11

Chapter 2. RedBoot Commands and Examples

Format Description Example

operand A simple value; some commands | RedBoot> fis delete JFFS2
require a single parameter for which
an additionatX switch would be

redundant. In the exampl@F-FS2 is
the name of a flash image. The

image name is always required, thus
is no need to qualify it with a switch.
Note that any un-qualified operand
must always appear at the end of the
command.

The list of available commands, and their syntax, can be obtained by tgplpgt the command line:

RedBoot> help

Manage aliases kept in FLASH memory
alias name [value]

Set/Query the system console baud rate
baudrate [-b <rate>]

Manage machine caches
cache [ON | OFF]

Display/switch console channel
channel [-1] <channel number>]

Display disk partitions

disks
Display (hex dump) a range of memory

dump -b <location> [-I <length>] [-s]
Manage flash images

fis {cmds}

Manage configuration kept in FLASH memory
fconfig [-i] [-1] [-n] [-f] [-d] | [-d] nickname [value]
Execute code at a location
go [-w <timeout>] [entry]
Help about help?
help [<topic>]
Set/change IP addresses

ip_address [-I <local_ip_address>] [-h <server_address>]
Load a file
load [-r] [-v] [-d] [-c <channel>] [-h <host>] [-m {TFTP | HTTP | {X]y}MODEM | disk}]

[-b <base_address>] <file_name>
Network connectivity test

ping [-v] [-n <count>] [-t <timeout>] [-i <IP_addr]
-h <host>
Reset the system
reset
Display RedBoot version information
version
Display (hex dump) a range of memory
X -b <location> [-l <length>] [-s]

12

Commands can be abbreviated to their shortest unique string. Thus in the list djolovdum and dump are all
valid for thedump command. Théconfig command can be abbreviatid butf would be ambiguous witfis.

There is one additional, special command. When RedBoot detects '$’ or '+’ (unless escaped via '\') in a command,
it switches to GDB protocol mode. At this point, the eCos GDB stubs take over, allowing connections from a GDB
host. The only way to get back to RedBoot from GDB mode is to restart the platform.

NOTE: Multiple commands may be entered on a single line, separated by the semi-colon “;” character.

The standard RedBoot command set is structured around the bootstrap environment. These commands are designed
to be simple to use and remember, while still providing sufficient power and flexibility to be useful. No attempt

has been made to render RedBoot as the end-all product. As such, things such as the debug environment are left to
other modules, such as GDB stubs, which are typically included in RedBoot.

The command set may be also be extended on a platform basis.

Common Commands

alias

Name

alias — Manipulate command line aliases

Synopsis

alias { name}[value]

Arguments

Name Type Description Default

name Name The name for this alias. |hone

value String Replacement value for thenone
alias.

Description

The alias command is used to maintain simple command line aliases. These aliases are shorthand for longer ex-
pressions. When the pattern %{name} appears in a command line, including in a script, the corresponding value
will be substituted. Aliases may be nested.

13

alias

If no value is provided, then the current value of the alias is displayed.

If the system supports non-volatile configuration data viaftlafig command (seéhe Section calledPersistent
State Flash-based Configuration and ConiroChapter 2, then the value will be saved and used when the system
is reset.

Examples

Set an alias.

RedBoot> alias joe "This is Joe"
Update RedBoot non-volatile configuration - continue (y/n)? n

Display an alias.

RedBoot> alias joe
'joe’ = 'This is Joe’

Use an alias. Note: tHe" command simply echoes the command to to console.

RedBoot> = %f{joe}
This is Joe

Aliases can be nested.

RedBoot> alias frank "Who are you? %f{joe}"

Update RedBoot non-volatile configuration - continue (y/n)? n
RedBoot> = %f{frank}

Who are you? This is Joe

Notice how the value of %{frank} changes when %{joe} is changed since the value of %f{joe} is not evaluated
until %{frank} is evaluated.

RedBoot> alias joe "This is now Josephine"

Update RedBoot non-volatile configuration - continue (y/n)? n
RedBoot> = %f{frank}

Who are you? This is now Josephine

14

baudrate

Name

baudrate — Set the baud rate for the system serial console

Synopsis

baudrate [-b rate]

Arguments

Name Type Description Default

-b rate Number The baud rate to use for theone
serial console.

Description

Thebaudrate command sets the baud rate for the system serial console.
If no value is provided, then the current value of the console baud rate is displayed.

If the system supports non-volatile configuration data viaftlbafig command (seée Section calledersistent
State Flash-based Configuration and ConiroChapter 2, then the value will be saved and used when the system
is reset.

Examples

Show the current baud rate.

RedBoot> baudrate
Baud rate = 38400

Change the console baud rate. In order to make this operation safer, there will be a slight pause after the first
message to give you time to change to the new baud rate. If it doesn’t work, or a less than affirmative answer is
given to the "continue" prompt, then the baud rate will revert to the current value. Only after the baud rate has been
firmly established wilRedBoogive you an opportunity to save the value in persistent storage.

RedBoot> baudrate -b 57600

Baud rate will be changed to 57600 - update your settings
Device baud rate changed at this point

Baud rate changed to 57600 - continue (y/n)? y

15

baudrate

Update RedBoot non-volatile configuration - continue (y/n)? n

16

cache

Name

cache — Control hardware caches

Synopsis

cache [on | off]

Arguments

Name Type Description Default
on Turn the caches on none
off Turn the caches off none
Description

Thecachecommand is used to manipulate the caches on the processor.
With no options, this command specifies the state of the system caches.

When an option is given, the caches are turned off or on appropriately.

Examples

Show the current cache state.

RedBoot> cache
Data cache: On, Instruction cache: On

Disable the caches.

RedBoot> cache off
RedBoot> cache
Data cache: Off, Instruction cache: Off

Enable the caches.

RedBoot> cache on

17

cache

RedBoot> cache
Data cache: On, Instruction cache: On

18

channel

Name

channel — Select the system console channel

Synopsis

channel [-1 | channel_number]

Arguments

Name Type Description Default
-1 Reset the console channehone
channel_number Number Select a channel none
Description

With no arguments, thehannelcommand displays the current console channel number.

When passed an argument of O upward, this command switches the console channel to that channel number. The
mapping between channel numbers and physical channels is platform specific but will typically be something like
channel 0 is the first serial port, channel 1 is the second, etc.

When passed an argument of -1, this command reverts RedBoot to responding to whatever channel receives input
first, as happens when RedBoot initially starts execution.

Examples

Show the current channel.

RedBoot> channel
Current console channel id: 0

Change to an invalid channel.

RedBoot> channel 99
**Error: bad channel number '99’

Revert to the default channel setting (any console mode).

19

channel

RedBoot> channel -1

20

cksum

Name

cksum — Compute POSIX checksums

Synopsis

cksum {-b location }{-I length }

Arguments

Name Type Description Default

-b location Memory address Location in memory for |none
stat of data.

-l length Number Length of data none

Description

Computes the POSIX checksum on a range of memory (either RAM or FLASH). The values printed (decimal
cksum, decimal length, hexadecimal cksum, hexadecimal length) can be compared with the output from the Linux
program 'cksum’.

Examples

Checksum a buffer.

RedBoot> cksum -b 0x100000 -I 0x100
POSIX cksum = 3286483632 256 (0xc3e3c2b0 0x00000100)

Checksum an area of memory after loading a file. Note that the base address and length parameters are provided
by the preceding load command.

RedBoot> load -r -b %{FREEMEMLO} redboot.bin

Raw file loaded 0x06012800-0x0602f0a8

RedBoot> cksum

Computing cksum for area 0x06012800-0x0602f0a8

POSIX cksum = 2092197813 116904 (0x7ch467b5 0x0001c8a8)

21

cksum

22

disks

Name

disks — List available disk partitions.

Synopsis

disks

Arguments

None.

Description

Thedisks command is used to list disk partitions recognized by RedBoot.

Examples

Show what disk partitions are available.

RedBoot> disks

hdal Linux Swap

hda2 Linux

00100000: 00 3E 00 06 00 06 00 06 00 00 00 00 00 00 00 00 |.>............ |
00100010: 00 00 00 78 00 70 00 60 00 60 00 60 00 60 00 60 |.x.p.....|

23

disks

24

dump

Name

dump — Display memory.

Synopsis

dump {-b location }[-I length][-s][-1]-2]-4]

Arguments

Name Type Description Default

-b location Memory address Location in memory for |none
start of data.

-l length Number Length of data 32

-S Boolean Format data using
Motorola S-records.

-1 Access one byte (8 bits) atl

a time. Only the least
significant 8 bits of the
pattern will be used.

-2 IAccess two bytes (16 bits)-1
at a time. Only the least
significant 16 bits of the
pattern will be used.

-4 IAccess one word (32 bits)-1
at a time.

Description

Display a range of memory on the system console.
Thex is a synonym fodump.
Note that this command could be detrimental if used on memory mapped hardware registers.

The memory is displayed at most sixteen bytes per line, first as the raw hex value, followed by an ASCII interpre-
tation of the data.

25

dump

Examples

Display a buffer, one byte at a time.

RedBoot> mfill -b 0x100000 - 0x20 -p OXDEADFACE

RedBoot> x -b 0x100000

00100000: CE FA AD DE CE FA AD DE CE FA AD DE CE FA AD DE |...cccccuuen. |
00100010: CE FA AD DE CE FA AD DE CE FA AD DE CE FA AD DE |...ccccunen. |

Display a buffer, one short (16 bit) word at a time. Note in this case that the ASCII interpretation is suppressed.

RedBoot> dump -b 0x100000 -2
00100000: FACE DEAD FACE DEAD FACE DEAD FACE DEAD
00100010: FACE DEAD FACE DEAD FACE DEAD FACE DEAD

Display a buffer, one word (32 bit) word at a time. Note in this case that the ASCII interpretation is suppressed.

RedBoot> dump -b 0x100000 -4
00100000: DEADFACE DEADFACE DEADFACE DEADFACE
00100010: DEADFACE DEADFACE DEADFACE DEADFACE

Display the same buffer, using Motorola S-record format.

RedBoot> dump -b 0x100000 -s
S31500100000CEFAADDECEFAADDECEFAADDECEFAADDESE
S31500100010CEFAADDECEFAADDECEFAADDECEFAADDE7E

Display a buffer, with visible ASCII strings.

RedBoot> d -b 0xfe00bO00 -I 0x80

OXFEO0BO0O: 20 25 70 OA 00 00 00 00 41 74 74 65 6D 70 74 20 | %p.....Attempt |
OXFEO0BO010: 74 6F 20 6C 6F 61 64 20 53 2D 72 65 63 6F 72 64 |to load S-record|
OXFEO0BO020: 20 64 61 74 61 20 74 6F 20 61 64 64 72 65 73 73 | data to address|
OxFEO0BO30: 3A 20 25 70 20 5B 6E 6F 74 20 69 6E 20 52 41 4D |: %p [not in RAM|
OxFEO0BO40: 5D OA 00 00 2A 2A 2A 20 57 61 72 6E 69 6E 67 21 |]...*** Warning!|
OxFEO0BO050: 20 43 68 65 63 6B 73 75 6D 20 66 61 69 6C 75 72 | Checksum failur|
OXFEOOBO60: 65 20 2D 20 41 64 64 72 3A 20 25 6C 78 2C 20 25 |e - Addr: %lx, %|
OxFEO0BO70: 30 32 6C 58 20 3C 3E 20 25 30 32 6C 58 OA 00 00 |02IX <> %02IX...|
OXFEO0BO080: 45 6E 74 72 79 20 70 6F 69 6E 74 3A 20 25 70 2C |Entry point: %p,|

26

help

Name

help — Display help on available commands

Synopsis

help [topic]

Arguments

Name Type Description Default

topic String \Which command to All commands
provide help for.

Description

The help command displays information about the available RedBoot commandgoffi@is given, then the
display is restricted to information about that specific command.

If the command has sub-commands, ég.then the topic specific display will print additional information about
the available sub-commands. special (ICMP) packets to a specific host. These packets should be automatically
returned by that host. The command will indicate how many of these round-trips were successfully completed.

Examples

Show generic help. Note that the contents of this display will depend on the various configuration options for
RedBoot when it was built.

RedBoot> help
Manage aliases kept in FLASH memory
alias name [value]
Manage machine caches
cache [ON | OFF]
Display/switch console channel
channel [-1] <channel number >]
Compute a 32bit checksum [POSIX algorithm] for a range of memory

cksum -b <location > -l <length >
Display (hex dump) a range of memory

dump -b <location > [-I <length >] [-s] [-1]2]4]
Manage FLASH images

fis {cmds}
Manage configuration kept in FLASH memory

fconfig [-i] [-1] [-n] [-f] [-d] | [-d] nickname [value]

27

help

Execute code at a location

go [-w <timeout >] [entry]
Help about help?

help [<topic >]
Set/change IP addresses

ip_address [-l <local_ip_address >] [-h <server_address >]
Load a file
load [-r] [-v] [-d] [-h <host >] [-m {TFTP | HTTP | {x|[y}MODEM -c <channel_number >}]

[-b <base_address >] <file_name >
Compare two blocks of memory

mcmp -s <location > -d <location > -I <length > [-1]-2]-4]
Fill a block of memory with a pattern
mfill -b <location > -l <length > -p <pattern > [-1]-2|-4]
Network connectivity test
ping [-v] [-n <count >] [<length >] [t <timeout >] [-r <rate >]

[<IP_addr >] -h <IP_addr >
Reset the system
reset
Display RedBoot version information
version
Display (hex dump) a range of memory
x -b <location > [-I <length >] [-s] [-1]2]4]

Help about a command with sub-commands.

RedBoot> help fis
Manage FLASH images

fis {cmds}
Create an image

fis create -b <mem_base> -l <image_length > [-s <data_length >]

[f <flash_addr >] [-e <entry_point >] [-r <ram_addr >] [-n] <name>

Display an image from FLASH Image System [FIS]

fis delete name
Erase FLASH contents

fis erase -f <flash_addr > -l <length >

Display free [available] locations within FLASH Image System [FIS]
fis free

Initialize FLASH Image System [FIS]
fis init [-f]

Display contents of FLASH Image System [FIS]
fis list [-c] [-d]
Load image from FLASH Image System [FIS] into RAM

fis load [-d] [-b <memory_load_address >] [-c] name
Write raw data directly to FLASH
fis write -f <flash_addr > -b <mem_base> -| <image_length >

28

ip_address

Name

ip_address — Set IP addresses

Synopsis

ip_address [-| local_IP_address][-h server_IP_address][-d DNS_server IP_address]

Arguments

Name Type Description Default

-l local_IP_address Numeric IP or DNS name [The IP address RedBoot [none
should use.

-h Numeric IP or DNS name [The IP address of the none

server_IP_address default server. Use of this
address is implied by other
commands, such dsad.

-d Numeric IP or DNS name [The IP address of the DN$ione

DNS_server_IP_address server.

Description

The ip_addresscommand is used to show and/or change the basic IP addresses used by RedBoot. IP addresses
may be given as humeric values, e.g. 192.168.1.67, or as symbolic names such as www.redhat.com if DNS support
is enabled.

The-l option is used to set the IP address used by the target device.
The-h option is used to set the default server address, such as is usedlbgdlm®emmand.

The-d option is used to set the default DNS server address which is used for resolving symbolic network addresses.
Note that an address of 0.0.0.0 will disable DNS lookups.

Examples

Display the current network settings.

RedBoot> ip_address
IP: 192.168.1.31, Default server: 192.168.1.101, DNS server IP: 0.0.0.0

29

ip_address

30

Change the DNS server address.

RedBoot> ip_address -d 192.168.1.101
IP: 192.168.1.31, Default server: 192.168.1.101, DNS server IP: 192.168.1.101

Change the default server address.

RedBoot> ip_address -h 192.168.1.104
IP: 192.168.1.31, Default server: 192.168.1.104, DNS server IP: 192.168.1.101

load

Name

load — Download programs or data to the RedBoot platform

Synopsis

load [-v][-d][-r][-m [[xmodem | ymodem] | tftp | disk]] [-h server_IP_address
channel][file_name

Arguments

][-b location]][-c

Name

Type

Description

Default

-V

Boolean

Display a small spinner
(indicator) while the
download is in progress.
This is just for feedback,
especially during long
loads. Note that the optior

serial download method
since it would interfere
with the protocol.

quiet

has no effect when using a

-d

Boolean

Decompress data stream
(gzip data)

non-compressed data

-r

Boolean

Raw (or binary) data

formatted (S-records, ELH

image, etc)

-m tftp

Transfer data via the
network using TFTP
protocol.

TFTP

-m http

Transfer data via the
network using HTTP
protocol.

TFTP

-m xmodem

Transfer data using
X-modenprotocol.

TFTP

-m ymodem

Transfer data using
'Y-modenprotocol.

TFTP

-m disk

Transfer data from a local
disk.

TFTP

-h
server_IP_address

Numeric IP or DNS name

or HTTP server.

The IP address of the TFT¥Yalue set byip_address

31

load

32

Name Type Description Default

-b location Number Address in memory to loadepends on data format
the data. Formatted data
streams will have an

implied load address which
this option may override.

-c channel Number Specify which 1/0 channelDepends on data format
to use for download. This
option is only supported

when using either xmodem
or ymodem protocol.

file_name String 'The name of the file on théNone
TFTP or HTTP server or
the local disk. Details of
how this is specified for

TFTP are host-specific. Fo
local disk files, the name
must be indisk filename

format. The disk portion

must match one of the disk
names listed by thdisks
command.

=

Description

Theload command is used to download data into the target system. Data can be loaded via a network connection,
using either the TFTP or HTTP protocols, or the console serial connection using the X/Y modem protocol. Files
may also be loaded directly from local filesystems on disk. Files to be downloaded may either be executable images
in ELF executable program format, Motorola S-record (SREC) format or raw data.

Examples

Download a Motorola S-record (or ELF) image, using TFTP, specifying the base memory address.

RedBoot> load redboot.ROM -b 0x8c400000
Address offset = 0x0c400000
Entry point: 0x80000000, address range: 0x80000000-0x8000fe80

Download a Motorola S-record (or ELF) image, using HTTP, specifying the host [server] address.

RedBoot> load /redboot.ROM -m HTTP -h 192.168.1.104
Address offset = 0x0c400000
Entry point: 0x80000000, address range: 0x80000000-0x8000fe80

Load an ELF file from /dev/hdal which should be an EXT2 patrtition:

RedBoot> load -mode disk hdal:hello.elf
Entry point: 0x00020000, address range: 0x00020000-0x0002fd70

load

33

load

34

mcmp

Name

mcmp— Compare two segments of memory

Synopsis

mcmp {-s locationl }{-d locationl }{-I length }[-1]-2]|-4]

Arguments
Name Type Description Default
-slocationl Memory address Location for start of data. |none
-d location2 Memory address Location for start of data. none
-l length Number Length of data none
-1)Access one byte (8 bits) at4
a time. Only the least
significant 8 bits of the
pattern will be used.
-2)Access two bytes (16 bits)-4
at a time. Only the least
significant 16 bits of the
pattern will be used.
-4)Access one word (32 bits)-4
at a time.
Description

Compares the contents of two ranges of memory (RAM, ROM, FLASH, etc).

Examples

Compare two buffers which match (resulgjgie).

RedBoot> mfill -b 0x100000 -l 0x20 -p OXDEADFACE
RedBoot> mfill -b 0x200000 -l 0x20 -p OXDEADFACE
RedBoot> mcmp -s 0x100000 -d 0x200000 -l 0x20

Compare two buffers which don’t match. Only the first non-matching element is displayed.

35

mcmp

RedBoot> mcmp -s 0x100000 -d 0x200000 -l 0x30 -2
Buffers don’t match - 0x00100020=0x6000, 0x00200020=0x0000

36

mfill

Name

mfill — Fill RAM with a specified pattern

Synopsis

mfill {-b location

}-l length }{-p value }[-1]-2]|-4]

Arguments
Name Type Description Default
-b location Memory address Location in memory for [none
start of data.
-l length Number Length of data none
-p pattern Number Data value to fill with 0
-1 /Access one byte (8 bits) at4
a time. Only the least
significant 8 bits of the
pattern will be used.
-2)Access two bytes (16 bits)-4
at a time. Only the least
significant 16 bits of the
pattern will be used.
-4)Access one word (32 bits)-4
at a time.
Description

Fills a range of memory with the given pattern.

Examples

Fill a buffer with zeros.

RedBoot>
00100000:
00100010:
RedBoot>
RedBoot>
00100000:

x -b 0x100000 -1 0x20

00 3E 00 06 00 06 00 06 00 00 00 OO0 00 00 00 00 |>....ccceeew. [
00 00 00 78 00 70 00 60 00 60 00 60 00 60 00 60 |.x.p..."."

mfill -b 0x100000 -l 0x20
x -b 0x100000 -l 0x20

00 00 00 00 OO0 OO0 00 OO 00 00 OO0 OO0 00 00 00 00 |ocoiroerreenne

37

mfill

38

00100010: 00 00 00 00 00 00 OO OO 00 00O 00O 00 00 00 00 00 |............

Fill a buffer with a pattern.

RedBoot>
RedBoot>

00100000:
00100010:

mfill -b 0x100000 -l Ox20 -p OXxDEADFACE

x -b 0x100000 -l 0x20

CE FA AD DE CE FA AD DE CE FA AD DE CE FA AD DE
CE FA AD DE CE FA AD DE CE FA AD DE CE FA AD DE

ping

Name

ping — Verify network connectivity

Synopsis

ping [v] [-i local IP_address][l length] [-n count] [t timeout] [-r rate] {-h
server_IP_address }

Arguments

Name Type Description Default
-V Boolean Be verbose, displaying [quiet
information about each
packet sent.

-n local_IP_address Number Controls the number of |10
packets to be sent.
-i local_IP_address Numeric IP or DNS name [The IP address RedBoot |Value set byip_address
should use.

-h Numeric IP or DNS name [The IP address of the hosinone
server_|IP_address to contact.
-l length Number IThe length of the ICMP |64
data payload.
-r length Number How fast to deliver packetd,000ms (1 second)
i.e. time between
successive sends. A value
of 0 sends packets as
quickly as possible.

-t length Number How long to wait for the |{1000ms (1 second)
round-trip to complete,

specified in milliseconds.

Description

The ping command checks the connectivity of the local network by sending special (ICMP) packets to a specific
host. These packets should be automatically returned by that host. The command will indicate how many of these
round-trips were successfully completed.

39

ping

40

Examples

Test connectivity to host 192.168.1.101.

RedBoot> ping -h 192.168.1.101
Network PING - from 192.168.1.31 to 192.168.1.101
PING - received 10 of 10 expected

Test connectivity to host 192.168.1.101, with verbose reporting.

RedBoot> ping -h 192.168.1.101 -v -n 4
Network PING - from 192.168.1.31 to 192.168.1.101

seq:
seq:
seq:

seq:
PING

1,
2,
3,
4,

time:
time:
time:
time:

1 (ticks)
1 (ticks)
1 (ticks)
1 (ticks)

- received 10 of 10 expected

Test connectivity to a non-existent host (192.168.1.109).
RedBoot> ping -h 192.168.1.109 -v -n 4
PING: Cannot reach server '192.168.1.109" (192.168.1.109)

reset

Name

reset — Reset the device

Synopsis

reset

Arguments

None

Description

Theresetcommand causes the target platform to be reset. Where possible (hardware support permitting), this will
be equivalent to a power-on reset condition.

Examples

Reset the platform.

RedBoot> reset

. Resetting.+... Waiting for network card: .

Socket Communications, Inc: Low Power Ethernet CF Revision C 5V/3.3V 08/27/98
Ethernet eth0: MAC address 00:c0:1b:00:ba:28

IP: 192.168.1.29, Default server: 192.168.1.101

RedBoot(tm) bootstrap and debug environment [ROM]
Non-certified release, version UNKNOWN - built 10:41:41, May 14 2002

Platform: Compaq iPAQ Pocket PC (StrongARM 1110)
Copyright (C) 2000, 2001, 2002, Red Hat, Inc.

RAM: 0x00000000-0x01fc0000, 0x00014748-0x01f71000 available

FLASH: 0x50000000 - 0x51000000, 64 blocks of 0x00040000 bytes each.
RedBoot>

41

reset

42

version

Name

version — Display RedBoot version information

Synopsis

version

Arguments

None

Description

Theversion command simply displays version information about RedBoot.

Examples

Display RedBoot’s version.

RedBoot> version

RedBoot(tm) debug environment - built 09:12:03, Feb 12 2001
Platform: XYZ (PowerPC 860)

Copyright (C) 2000, 2001, Red Hat, Inc.

RAM: 0x00000000-0x00400000

43

version

44

Flash Image System (FIS)

fis init

If the platform has flash memory, RedBoot can use this for image storage. Executable images, as well as data, can
be stored in flash in a simple file store. Tiecommand (fis is short for Flash Image System) is used to manipulate
and maintain flash images.

Name

fis init — Initialize Flash Image System (FIS)

Synopsis

fisinit [-f]

Arguments

Name Type Description Default

-f All blocks of flash memory,
(except for the boot blocks)
will be erased as part of the
initialization procedure.

Description

This command is used to initialize the Flash Image System (FIS). It should normally only be executed once, when
RedBoot is first installed on the hardware. If the reserved images or their sizes in the FIS change, due to a different
configuration of RedBoot being used, it may be necessary to issue the command again though.

Note: Subsequent executions will cause loss of previously stored information in the FIS.

Examples
Initialize the FIS directory.

RedBoot> fis init
About to initialize [format] flash image system - continue (y/n)? y

45

fis init

*** |nitialize FLASH Image System

Warning: device contents not erased, some blocks may not be usable
. Erase from 0x00070000-0x00080000: .
. Program from 0x0606f000-0x0607f000 at 0x00070000: .

Initialize the FIS directory and all of flash memory, except for first blocks of the flash where the boot monitor
resides.

RedBoot> fis init -f

About to initialize [format] flash image system - continue (y/n)? y
*** |nitialize FLASH Image System

... Erase from 0x00020000-0x00070000:

... Erase from 0x00080000-0x00080000:

... Erase from 0x00070000-0x00080000: .

. Program from 0x0606f000-0x0607f000 at 0x00070000: .

46

fis list

Name

fis list — List Flash Image System directory

Synopsis

fis list [-f]

Arguments

Name Type Description Default

-C Show image checksum
instead of memory addres
(columnMem addr is
replaced byChecksum).

-d Show image data length
instead of amount of flash
occupied by image
(columnLength is
replaced bybatalen).

(%)

Description

This command lists the images currently available in the FIS. Certain images used by RedBoot have fixed hames
and have reserved slots in the FIS (these can be seen after usifig ithie command). Other images can be
manipulated by the user.

Note: The images are listed in the order they appear in the FIS directory, not by name or creation time.

Examples
List the FIS directory.

RedBoot> fis list

Name FLASH addr Mem addr Length Entry point
RedBoot 0x00000000 0x00000000 0x00020000 0x00000000
RedBoot config 0x0007F000 0x0007F000 0x00001000 0x00000000
FIS directory 0x00070000 0x00070000 0xO000FO00 0x00000000

47

fis list

48

List the FIS directory, with image checksums substituted for memory addresses.

RedBoot> fis list -c

Name FLASH addr Checksum Length Entry point
RedBoot 0x00000000 0x00000000 0x00020000 0x00000000
RedBoot config 0x0007F000 0x00000000 0x00001000 0x00000000
FIS directory 0x00070000 0x00000000 0x0000FO00 0x00000000

List the FIS directory with image data lengths substituted for flash block reservation lengths.

RedBoot> fis list

Name FLASH addr Mem addr Datalen Entry point
RedBoot 0x00000000 0x00000000 0x00000000 0x00000000
RedBoot config 0x0007F000 0x0007F000 0x00000000 0x00000000
FIS directory 0x00070000 0x00070000 0x00000000 0x00000000

fis free

Name

fis free — Free flash image

Synopsis

fis free

Description

This command shows which areas of the flash memory are currently not in use. When a block contains non-erased
contents it is considered in use. Since it is possible to force an image to be loaded at a particular flash location, this
command can be used to check whether that location is in use by any other image.

Note: There is currently no cross-checking between actual flash contents and the FIS directory, which mans
that there could be a segment of flash which is not erased that does not correspond to a named image, or
vice-versa.

Examples

Show free flash areas.
RedBoot> fis free

0xA0040000 .. OxAQ7C0000
0xA0840000 .. OXAOFCO0000

49

fis free

50

fis create

Name

fis create

Synopsis

fis create {-b data address } {-I
address][-s data length

— Create flash image

length } [-f
]1[-n][name]

flash address][-e entry][-r relocation

Arguments

Name Type Description Default

-b Number)Address of data to be /Address of last loaded file
written to the flash. If not set in a load

operation, it must be
specified.

- Number Length of flash areato |Length of area reserved in
occopy. If specified, and [FIS directory if the image
the named image already [already exists, or the leng
exists, the length must [of the last loaded file. If
match the value in the FISneither are set, it must be
directory. specified.

-f Number)Address of flash areato [The address of an area
occopy. reserved in the FIS

directory for extant images.
Otherwise the first free
block which is large
enough will be used.

-e Number Entry address for an The entry address of last
executable image, used byoaded file.
thefis load command.

-r Number)Address where the image|The load address of the |
should be relocated to by loaded file.
thefis load command. This
is only relevant for images
that will be loaded with the
fis load command.

St

51

fis create

Name Type Description Default

-S Number Actual length of data It defaults to the length of
written to image. This is [the last loaded file.

used to control the range
over which the checksum js
made.

-n When set, no image data
will be written to the flash.
Only the FIS directory will
be updated.

name String Name of flash image.

Description

This command creates an image in the FIS directory. The data for the image must existin RAM memory before the
copy. Typically, you would use the RedBdoad command to load file into RAM and then tfie createcommand
to write it to a flash image.

Examples

Trying to create an extant image, will require the action to be verified.

RedBoot> fis create RedBoot -f 0xa0000000 -b 0x8c400000 -I 0x20000
An image named ‘RedBoot’ exists - continue (y/n)? n

Create a new test image, let the command find a suitable place.

RedBoot> fis create junk -b 0x8c400000 -l 0x20000

... Erase from 0xa0040000-0xa0060000: .

... Program from 0x8c400000-0x8c420000 at 0xa0040000: .
... Erase from 0xa0fe0000-0xal1000000: .

. Program from 0x8c7d0000-0x8c7f0000 at 0xaOfe0000: .

Update the RedBoot[RAM] image.

RedBoot> load redboot RAM.img

Entry point: 0x060213c0, address range: 0x06020000-0x06036cc0
RedBoot> fis create RedBoot[RAM]

No memory address set.

An image named 'RedBoot[RAM] exists - continue (y/n)? y
* CAUTION * about to program 'RedBoot[RAM]
at 0x00020000..0x00036¢bf from 0x06020000 - continue (y/n)? y

... Erase from 0x00020000-0x00040000: ..
... Program from 0x06020000-0x06036cc0 at 0x00020000: ..
... Erase from 0x00070000-0x00080000: .

. Program from 0x0606f000-0x0607f000 at 0x00070000: .

52

fis create

53

fis create

54

fis load

Name

fis load — Load flash image

Synopsis

fisload [-b load address][-c][-d][name]

Arguments

Name Type

Description

Default

-b Number

Address the image should

location to which the file
was linked. This option
allows the image to be
loaded to a specific
memory location, possibly
overriding any assumed
location.

be loaded to. Executable |associated with the image
images normally load at thia the FIS directory will be
used.

If not specified, the address

Compute and print the
checksum of the image
data after it has been
loaded into memory.

while copying it from flash
to RAM.

Decompress gzipped image

name String

The name of the file, as

shown in the FIS directory]

Description

This command is used to transfer an image from flash memory to RAM.

Once the image has been loaded, it may be executed usigg twenmand.

55

fis load

56

Examples
Load and run RedBoot[RAM] image.

RedBoot> fis load RedBoot[RAM]
RedBoot> go

fis delete

Name

fis delete — Delete flash image

Synopsis

fis delete { name}

Arguments
Name Type Description Default
name Number Name of image that should
be deleted.
Description

This command removes an image from the FIS. The flash memory will be erased as part of the execution of this
command, as well as removal of the name from the FIS directory.

Note: Certain images are reserved by RedBoot and cannot be deleted. RedBoot will issue a warning if this is
attempted.

Examples

RedBoot> fis list

Name flash addr Mem addr Length Entry point
RedBoot 0xA0000000 0xA0000000 0x020000 0x80000000
RedBoot config =~ OxAOFCO000 OxAOFC0000 0x020000 0x00000000
FIS directory OXAOFEO000 OxAOFE0000 0x020000 0x00000000

junk 0xA0040000 0x8C400000 0x020000 0x80000000
RedBoot> fis delete junk
Delete image ‘junk’ - continue (y/n)? y

. Erase from 0xa0040000-0xa0060000: .
. Erase from 0xaOfe0000-0xa1000000: .
. Program from 0x8c7d0000-0x8c7f0000 at 0xaOfe0000: .

57

fis delete

58

fis lock

Name

fis lock — Lock flash area

Synopsis

fislock {-f flash_address }{-I length }

Arguments
Name Type Description Default
flash_address Number Address of area to be
locked.
length Number Length of area to be
locked.
Description

This command is used to write-protect (lock) a portion of flash memory, to prevent accidental overwriting of
images. In order to make make any modifications to the flash, a matfisinglock command must be issued.
This command is optional and will only be provided on hardware which can support write-protection of the flash
space.

Note: Depending on the system, attempting to write to write-protected flash may generate errors or warnings,
or be benignly quiet.

Examples

Lock an area of the flash

RedBoot> fis lock -f 0xa0040000 -l 0x20000
. Lock from 0xa0040000-0xa0060000: .

59

fis lock

60

fis unlock

Name

fis unlock — Unlock flash area

Synopsis

fis unlock {-f flash_address }{-I length }

Arguments
Name Type Description Default
flash_address Number Address of area to be
unlocked.
length Number Length of area to be
unlocked.
Description

This command is used to unlock a portion of flash memory forcibly, allowing it to be updated. It must be issued
for regions which have been locked before the FIS can reuse those portions of flash.

Note: Some flash devices power up in locked state and always need to be manually unlocked before they can
be written to.

Examples

Unlock an area of the flash

RedBoot> fis unlock -f 0xa0040000 -l 0x20000
. Unlock from 0xa0040000-0xa0060000: .

61

fis unlock

62

fis erase

Name

fis erase = — Erase flash area

Synopsis

fis erase{-f flash_address }{-I length }

Arguments
Name Type Description Default
flash_address Number Address of area to be

erased.
length Number Length of area to be erased.
Description

This command is used to erase a portion of flash memory forcibly. There is no cross-checking to ensure that the
area being erased does not correspond to an existing image.

Examples

Erase an area of the flash

RedBoot> fis erase -f 0xa0040000 -l 0x20000
. Erase from 0xa0040000-0xa0060000: .

63

fis erase

64

fis write

Name

fis write — Write flash area

Synopsis

fis write {-b mem_address } {-| length }{-f flash_address }

Arguments
Name Type Description Default
mem_address Number Address of data to be

written to flash.
length Number Length of data to be

writtem.
flash_address Number IAddress of flash to write to.
Description

This command is used to write data from memory to flash. There is no cross-checking to ensure that the area being
written to does not correspond to an existing image.

Examples

Write an area of data to the flash

RedBoot> fis write -b 0x0606f000 -I 0x1000 -f 0x00020000
* CAUTION * about to program FLASH
at 0x00020000..0x0002ffff from 0x0606f000 - continue (y/n)? y
. Erase from 0x00020000-0x00030000: .
. Program from 0x0606f000-0x0607f000 at 0x00020000: .

65

fis write

66

Chapter 2. RedBoot Commands and Examples
Persistent State Flash-based Configuration and Control

RedBoot provides flash management support for storage in the flash memory of multiple executable images and of
non-volatile information such as IP addresses and other network information.

RedBoot on platforms that support flash based configuration information will report the following message the first
time that RedBoot is booted on the target:

flash configuration checksum error or invalid key

This error can be ignored if no flash based configuration is desired, or can be silenced by runricunfige
command as described below. At this point you may also wish to rufistiiét command. See other fis commands
in the Section callefflash Image System (FIS)

Certain control and configuration information used by RedBoot can be stored in flash.

The details of what information is maintained in flash differ, based on the platform and the configuration. However,
the basic operation used to maintain this information is the same. Usirigahitg -| command, the information
may be displayed and/or changed.

If the optional flag-i is specified, then the configuration database will be reset to its default state. This is also
needed the first time RedBoot is installed on the target, or when updating to a newer RedBoot with different
configuration keys.

If the optional flag! is specified, the configuration data is simply listed. Otherwise, each configuration parameter
will be displayed and you are given a chance to change it. The entire value must be typed - typing just carriage
return will leave a value unchanged. Boolean values may be entered using the first l&teirie,f for false).

At any time the editing process may be stopped simply by entering a period (.) on the line. Entering the caret
(™) moves the editing back to the previous item. See “RedBoot Editing CommahdsS3ection calledRedBoot

Editing Commands Chapter 1

If any changes are made in the configuration, then the updated data will be written back to flash after getting
acknowledgment from the user.

If the optional flagn is specified (with or withoutl) then “nicknames” of the entries are used. These are shorter
and less descriptive than “full” names. The full name may also be displayed by addifigfiag.

The reason for telling you nicknames is that a quick way to set a single entry is provided, using the format
RedBoot> fconfig nickname value

If no value is supplied, the command will list and prompt for only that entry. If a value is supplied, then the entry
will be set to that value. You will be prompted whether to write the new information into flash if any change was
made. For example

RedBoot> fconfig -l -n

boot_script: false

bootp: false

bootp_my_ip: 10.16.19.176

bootp_server_ip: 10.16.19.66

dns_ip: 10.16.19.1

gdb_port: 9000

net_debug: false

RedBoot> fconfig bootp_my_ip 10.16.19.177
bootp_my_ip: 10.16.19.176 Setting to 10.16.19.177
Update RedBoot non-volatile configuration - continue (y/n)? y

67

Chapter 2. RedBoot Commands and Examples

68

... Unlock from 0x507c0000-0x507e0000: .

... Erase from 0x507c0000-0x507e0000: .

. Program from 0x0000a8d0-0x0000acd0 at 0x507c0000: .
... Lock from 0x507c0000-0x507e0000: .

RedBoot>

Additionally, nicknames can be used like aliases via the format %{nickname}. This allows the values stored by
fconfig to be used directly by scripts and commands.

Depending on how your terminal program is connected and its capabilities, you might find that you are unable
to use line-editing to delete the ‘old’ value when using the default behavioizoafig nickname or just plain
fconfig, as shown in this example:

RedBoot> fco bootp
bootp: false_

The user deletes the word “false;” and enters “true” so the display looks like this:

RedBoot> fco bootp

bootp: true

Update RedBoot non-volatile configuration - continue (y/n)? y
. Unlock from ...

RedBoot>

To edit when you cannot backspace, use the optionatdla@or “dumb terminal”) to provide a simpler interface
thus:

RedBoot> fco -d bootp
bootp: false ? _

and you enter the value in the obvious manner thus:

RedBoot> fco -d bootp

bootp: false ? true

Update RedBoot non-volatile configuration - continue (y/n)? y
. Unlock from ...

RedBoot> _

One item which is always present in the configuration data is the ability to execute a script at boot time. A sequence
of RedBoot commands can be entered which will be executed when the system starts up. Optionally, a time-
out period can be provided which allows the user to abort the startup script and proceed with normal command
processing from the console.

RedBoot> fconfig -I

Run script at boot: false

Use BOOTP for network configuration: false
Local IP address: 192.168.1.29

Default server IP address: 192.168.1.101
DNS server IP address: 192.168.1.1

Chapter 2. RedBoot Commands and Examples

GDB connection port: 9000
Network debug at boot time: false

The following example sets a boot script and then shows it running.

RedBoot> fconfig

Run script at boot: false t
Boot script:
Enter script, terminate with empty line
>> fi li
Boot script timeout: 0 10
Use BOOTP for network configuration: false .
Update RedBoot non-volatile configuration - continue (y/n)? y

. Erase from 0xaOfc0000-0xa0fe0000: .

. Program from 0x8c021f60-0x8c022360 at 0xaOfcO000: .
RedBoot>

RedBoot(tm) debug environment - built 08:22:24, Aug 23 2000
Copyright (C) 2000, Red Hat, Inc.

RAM: 0x8c000000-0x8c800000

flash: 0xa0000000 - 0xalO000000, 128 blocks of 0x00020000 bytes ea.
Socket Communications, Inc: Low Power Ethernet CF Revision C \
5V/3.3V 08/27/98 IP: 192.168.1.29, Default server: 192.168.1.101 \

== Executing boot script in 10 seconds - enter ~C to abort

RedBoot> fi li
Name flash addr Mem addr Length Entry point
RedBoot 0xA0000000 0xA0000000 0x020000 0x80000000

RedBoot config 0xAOFC0000 0xAOFCO0000 0x020000 0x00000000
FIS directory O0xAOFE0000 OXAOFEO000 0x020000 0x00000000
RedBoot>

NOTE: The bold characters above indicate where something was entered on the console. As you can see,
the fi i command at the end came from the script, not the console. Once the script is executed, command
processing reverts to the console.

NOTE: RedBoot supports the notion of a boot script timeout, i.e. a period of time that RedBoot waits before
executing the boot time script. This period is primarily to allow the possibility of canceling the script. Since a
timeout value of zero (0) seconds would never allow the script to be aborted or canceled, this value is not
allowed. If the timeout value is zero, then RedBoot will abort the script execution immediately.

On many targets, RedBoot may be configured to run from ROM or it may be configured to run from RAM. Other
configurations are also possible. All RedBoot configurations will execute the boot script, but in certain cases it
may be desirable to limit the execution of certain script commands to one RedBoot configuration or the other. This
can be accomplished by prependingstartup type>} to the commands which should be executed only by the
RedBoot configured for the specified startup type. The following boot script illustrates this concept by having the
ROM based RedBoot load and run the RAM based RedBoot. The RAM based RedBoot will then list flash images.

69

Chapter 2. RedBoot Commands and Examples

70

RedBoot> fco

Run script at boot: false t

Boot script:

Enter script, terminate with empty line

>> {ROM}is load RedBoot[RAM]

>> {ROM}go

>> {RAMHfis i

>>

Boot script timeout (1000ms resolution): 2
Use BOOTP for network configuration: false

Update RedBoot non-volatile configuration - continue (y/n)? y
. Unlock from 0x007c0000-0x007e0000: .

. Erase from 0x007c0000-0x007e0000: .

. Program from 0xa0015030-0xa0016030 at 0x007df000: .

. Lock from 0x007c0000-0x007e0000: .

RedBoot> reset

. Resetting.

+Ethernet ethO: MAC address 00:80:4d:46:01:05

IP: 192.168.1.153, Default server: 192.168.1.10

RedBoot(tm) bootstrap and debug environment [ROM]
Red Hat certified release, version R1.xx - built 17:37:36, Aug 14 2001

Platform: 1Q80310 (XScale)
Copyright (C) 2000, 2001, Red Hat, Inc.

RAM: 0xa0000000-0xa2000000, 0xa001b088-0xalfdf000 available

FLASH: 0x00000000 - 0x00800000, 64 blocks of 0x00020000 bytes each.
== Executing boot script in 2.000 seconds - enter *C to abort

RedBoot> fis load RedBoot[RAM]

RedBoot> go

+Ethernet ethO: MAC address 00:80:4d:46:01:05

IP: 192.168.1.153, Default server: 192.168.1.10

RedBoot(tm) bootstrap and debug environment [RAM]
Red Hat certified release, version R1.xx - built 13:03:47, Aug 14 2001

Platform: 1Q80310 (XScale)
Copyright (C) 2000, 2001, Red Hat, Inc.

RAM: 0xa0000000-0xa2000000, 0xa0057fe8-0xalfdf000 available

FLASH: 0x00000000 - 0x00800000, 64 blocks of 0x00020000 bytes each.
== Executing boot script in 2.000 seconds - enter ~C to abort

RedBoot> fis i

Name FLASH addr Mem addr Length Entry point
RedBoot 0x00000000 0x00000000 0x00040000 0x00002000
RedBoot config 0x007DF000 0x007DF000 0x00001000 0x00000000
FIS directory 0x007E0000 0x007E0000 0x00020000 0x00000000
RedBoot>

Executing Programs from RedBoot

Once an image has been loaded into memory, either vitottecommand or thdis load command, execution
may be transfered to that image.

NOTE: The image is assumed to be a stand-alone entity, as RedBoot gives the entire platform over to it. Typical
examples would be an eCos application or a Linux kernel.

go

Name

go — Execute a program

Synopsis

go [-w timeout][start address]

Arguments
Name Type Description Default
-w timeout Number How long to wait before [0
starting execution.
start_address Number Address in memoryto |Value set by lastoad or fis
begin execution. load command.
Description

The go command causes RedBoot to give control of the target platform to another program. This program must
execute stand alone, e.g. an eCos application or a Linux kernel.

If the -w option is used, RedBoot will print a message and then wait for a period of time before starting the
execution. This is most useful in a script, giving the user a chance to abort executing a program and move on in the
script.

71

go

72

Examples

Execute a programno explicit output from RedBoot

RedBoot> go 0x40040

Execute a program with a timeout.

RedBoot> go -w 10

About to start execution at 0x00000000 - abort with ~*C within 10 seconds
~C

RedBoot>

Note that the starting address was implied (0x00000000 in this example). The user is prompted that execution will
commence in 10 seconds. At anytime within that 10 seconds the user maytty4€ on the console and RedBoot
will abort execution and return for the next command, either from a script or the console.

exec

Name

exec — Execute a Linux kernel

Synopsis

exec [-w timeout] [-r ramdisk address] [-s ramdisk length] [-b load_address {-l
load_length }][-c kernel command line][entry point]

Arguments

Name Type Description Default

-w timeout Number Time to wait before startin
execution.

-r ramdisk_address Number Address in memory of |None

"initrd"-style ramdisk -

passed to Linux kernel.
-sramdisk_length Number Length of ramdisk image {None
passed to Linux kernel.

-b load_address Number Address in memory of the|Value set byload or fis
Linux kernel image. load
-l load_length Number Length of Linux kernel |none
image.
-c ker- String Command line to pass to [None
nel_command_line the Linux kernel.
entry_address Number Starting address for Linux|Implied by architecture

kernel execution

Description

The execcommand is used to execute a non-eCos application, typically a Linux kernel. Additional information
may be passed to the kernel at startup time. This command is quite special (and unique fgoradimenand) in

that the program being executed may expect certain environmental setups, for example that the MMU is turned off,
etc.

The Linux kernel expects to have been loaded to a particular memory location which is architecture depen-
dent(0xC0008000 in the case of the SA1110). Since this memory is used by RedBoot internally, it is not possible
to load the kernel to that location directly. Thus the requirement for the "-b" option which tells the command where
the kernel has been loaded. When éxeccommand runs, the image will be relocated to the appropriate location
before being started. The "-r" and "-s" options are used to pass information to the kernel about where a statically

73

exec

74

loaded ramdisk (initrd) is located.

The "-c" option can be used to pass textual "command line" information to the kernel. If the command line data
contains any punctuation (spaces, etc), then it must be quoted using the double-quote character ™. If the quote
character is required, it should be written as '\".

Examples

Execute a Linux kernel, passing a command line, which needs relocation. The result from RedBoot is normally
quiet, with the target platform being passed over to Linux immediately.

RedBoot> exec -b 0x100000 -I 0x80000 -c "noinitrd root=/dev/mtdblock3 console=ttySAQ"

Execute a Linux kernel, default entry address and no relocation required, with a timeownidtesized linesre
output from the loaded kernel.

RedBoot> exec -c "console=ttyS0,38400 ip=dhcp nfsroot=/export/elfs-sh" -w 5

Now booting linux kernel:

Base address 0x8c001000 Entry 0x8c210000

Cmdline : console=ttyS0,38400 ip=dhcp nfsroot=/export/elfs-sh

About to start execution at 0x8x210000 - abort with ~*C within 5 seconds

Linux version 2.4.10-pre6 (...) (gcc version 3.1-stdsh-010931) #3 Thu Sep 27 11:04:23 BST 2001

Chapter 3. Rebuilding RedBoot

Introduction

RedBoot is built as an application on top of eCos. The makefile rules for building RedBoot are part of the eCos
CDL package, so it’s possible to build eCos from the Configuration Tool, as well as from the command line using
ecosconfig.

Building RedBoot requires only a few steps: selecting the platform and the RedBoot template, importing a platform
specific configuration file, and finally starting the build.

The platform specific configuration file makes sure the settings are correct for building RedBoot on the given
platform. Each platform should provide at least two of these configuration fdéisoot RAM.ecm for a RAM

mode RedBoot configuration ameblboot ROM.ecm or redboot ROMRAM.ecm for a ROM or ROMRAM mode
RedBoot configuration. There may be additional configuration files according to the requirements of the particular
platform.

The RedBoot build process results in a number of files in the installdirectory. The ELF fileedboot.elf is

the pricipal result. Depending on the platform CDL, there will also be generated versions of RedBoot in other file
formats, such asedboot.bin (binary format, good when doing an update of a primary RedBoot imagehsee
Section calledJpdate the primary RedBoot flash imageChapter 4, redboot.srec (Motorola S-record format,

good when downloading a RAM mode image for execution),raddoot.img (stripped ELF format, good when
downloading a RAM mode image for execution, smaller than the .srec file). Some platforms may provide additional
file formats and also relocate some of these files to a particular address making them more suitable for downloading
using a different boot monitor or flash programming tools.

The platform specific information iChapter 5should be consulted, as there may be other special instructions
required to build RedBoot for particular platforms.

Rebuilding RedBoot using ecosconfig

To rebuild RedBoot using the ecosconfig tool, create a temporary directory for building RedBoot, name it according
to the desired configuration of RedBoot, here RAM:

$ mkdir /tmp/redboot RAM
$ cd /tmp/redboot_RAM

Create the build tree according to the chosen platform, here using the Hitachi Solution Engine 7751 board as an
example:

Note: It is assumed that the environment variable ECOS_REPOSITORY points to the eCos/RedBoot source
tree.

$ ecosconfig new se7751 redboot

U CYGPKG_HAL_SH 7750, new inferred value 0

U CYGPKG_HAL_SH_7751, new inferred value 1

U CYGHWR_HAL_SH_IRQ_USE_IRQLVL, new inferred value 1
U CYGSEM_HAL_USE_ROM_MONITOR, new inferred value 0

75

Chapter 3. Rebuilding RedBoot

76

U CYGDBG_HAL_COMMON_CONTEXT_SAVE_MINIMUM, new inferred value O
U CYGDBG_HAL_DEBUG_GDB_INCLUDE_STUBS, new inferred value 1

U CYGFUN_LIBC_STRING_BSD_FUNCS, new inferred value O

U CYGPKG_NS DNS BUILD, new inferred value 0

Replace the platform name ("se7751") with the appropriate name for the chosen platform.

Then import the appropriate platform RedBoot configuration file, here for RAM configuration:

$ ecosconfig import ${ECOS_REPOSITORYY}/hal/sh/se7751/ VERSIONmisc/redboot_RAM.ecm
$ ecosconfig tree

Replace architecture ("sh"), platform ("se7751") and versiMERSION') with those appropriate for the chosen
platform and the version number of its HAL package. Also replace the configuration name (“redboot_ RAM.ecm")
with that of the appropriate configuration file.

RedBoot can now be built:

$ make

The resulting RedBoot files will be in the associated install directory, in this exartige|i/bin

In Chapter 5each platform’s details are described in the form of shell variables. Using those, the steps to build
RedBoot are:

export REDBOOT_CFG=redboot_ROM

export VERSION= VERSION

mkdir /tmp/${REDBOOT_CFG}

cd /tmp/${REDBOOT_CFG}

ecosconfig new ${TARGET} redboot

ecosconfig import ${ECOS_REPOSITORY}/hal/${ARCH_DIR}/${PLATFORM_DIR}/${VERSION}/misc/${REDBOOT_CFG}.ecm
ecosconfig tree

make

To build for another configuration, simply change REDBOOT _CF@efinition accordingly. Also make sure the
VERSIONVvariable matches the version of the platform package.

Rebuilding RedBoot from the Configuration Tool

To rebuild RedBoot from the Configuration Tool, open the template windawild->Templates) and select the
appropriate Hardware target and in Packages select "redboot”. Then press OK. Depending on the platform, a
number of conflicts may need to be resolved before the build can be started; select "Continue".

Import the desired RedBoot configuration file from the platform HAdlg->Import...). Depending on the plat-

form, a number of conflicts may need to be resolved before the build can be started; select "Continue”. For example,
if the platform selected is Hitachi SE7751 board and the RAM configuration RedBoot should be built, import the
file hal/sh/se7751/ VERSIONmisc/redboot_ RAM.ecm

Save the configuration somewhere suitable with enough disk space for building ReBB®oiSave...). Choose
the name according to the RedBoot configuration, for examegl®ot_RAM.ecc

Then start the buildBuild->Library) and wait for it to complete. The resulting RedBoot files will be in the associ-
ated install directory, for the example this wouldrbéboot_RAM_install/bin

Chapter 3. Rebuilding RedBoot

As noted above, each platform’s details are described @hapter 5 Use the infor-
mation provided in the shell variables to find the configuration file - the path to it is
${ECOS_REPOSITORY}/hal/${ARCH_DIR}${PLATFORM_DIR}/${VERSION}/misc/${REDBOOT_CFG}.ecm ,
where ECOS_REPOSITORYoints to the eCos/RedBoot sourc®8ERSION is the version of the package
(usually "current") andREDBOOT _CF(5 the desired configuration, e.g. redboot_ RAM.

s

Chapter 3. Rebuilding RedBoot

78

Chapter 4. Updating RedBoot

Introduction

RedBoot normally resides in an EPROM or, more common these days, a flash on the board. In the former case,
updating RedBoot necessitates physically removing the part and reprogramming a new RedBoot image into it
using prommer hardware. In the latter case, it is often possible to update RedBoot in situ using Redboot’s flash
management commands.

The process of updating RedBoot in situ is documented in this section. For this process, it is assumed that the target
is connected to a host system and that there is a serial connection giving access to the RedBoot CLI. For platforms
with a ROMRAM mode RedBoot, skip time Section calletUpdate the primary RedBoot flash image

Note: The addresses and sizes included in the below are examples only, and will differ from those you will see.
This is normal and should not cause concern.

Load and start a RedBoot RAM instance

There are a number of choices here. The basic case is where a RAM mode image has been stored in the FIS (flash
Image System). To load and execute this image, use the commands:

RedBoot> fis load RedBoot[RAM]
RedBoot> go

If this image is not available, or does not work, then an alternate RAM mode image must be loaded:

RedBoot> load redboot_ RAM.img
Entry point: 0x060213c0, address range: 0x06020000-0x060369c8
RedBoot> go

Note: This command loads the RedBoot image using the TFTP protocol via a network connection. Other
methods of loading are available, refer to the load command for more details.

Note: If you expect to be doing this more than once, it is a good idea to program the RAM mode image into the
flash. You do this using the fis create command after having downloaded the RAM mode image, but before
you start it.

Some platforms support locking (write protecting) certain regions of the flash, while others do not. If your
platform does not support locking, simply ignore the fis unlock and fis lock steps (the commands will not be
recognized by RedBoot).

RedBoot> fis unlock RedBoot[RAM]
.. Unlock from 0x00000000-0x00020000: ..

79

Chapter 4. Updating RedBoot

RedBoot> fis create RedBoot[RAM]

An image named 'RedBoot[RAM]' exists - continue (y/n)? y
* CAUTION * about to program 'RedBoot[RAM]’
at 0x00020000..0x000369c7 from 0x06020000 - continue (y/n)? y

. Erase from 0x00020000-0x00040000: ..
. Program from 0x06020000-0x060369c8 at 0x00020000: ..
. Erase from 0x00070000-0x00080000: .
. Program from 0x0606f000-0x0607f000 at 0x00070000: .
RedBoot> fis lock RedBoot[RAM]
. Lock from 0x00000000-0x00020000: ..

Update the primary RedBoot flash image

An instance of RedBoot should now be running on the target from RAM. This can be verified by looking for the
mode identifier in the banner. It should be either [RAM] or [ROMRAM].

If this is the first time RedBoot is running on the board or if the flash contents has been damaged, initialize the FIS
directory:

RedBoot> fis init -f

About to initialize [format] FLASH image system - continue (y/n)? y
*** |nitialize FLASH Image System

... Erase from 0x00020000-0x00070000:

... Erase from 0x00080000-0x00080000:

... Erase from 0x00070000-0x00080000: .

. Program from 0x0606f000-0x0607f000 at 0x00070000: .

It is important to understand that the presence of a correctly initialized FIS directory allows RedBoot to automati-
cally determine the flash parameters. Additionally, executing the steps below as stated without loading other data or
using other flash commands (than possiigyist) allows RedBoot to automatically determine the image location

and size parameters. This greatly reduces the risk of potential critical mistakes due to typographical errors. It is
still always possible to explicitly specify parameters, and indeed override these, but it is not advised.

Note: If the new RedBoot image has grown beyond the slot in flash reserved for it, it is necessary to change the
RedBoot configuration option CYGBLD_REDBOOT_MIN_IMAGE_SIZE so the FIS is created with adequate
space reserved for RedBoot images. In this case, it is necessary to re-initialize the FIS directory as described
above, using a RAM mode RedBoot compiled with the updated configuration.

Using theload command, download the new flash based image from the host, relocating the image to RAM::

RedBoot> load -r -b %{FREEMEMLO} redboot_ROM.bin
Raw file loaded 0x06046800-0x06062fe8, assumed entry at 0x06046800

80

Chapter 4. Updating RedBoot

Note: This command loads the RedBoot image using the TFTP protocol via a network connection. Other
methods of loading are available, refer to the load command for more details.

Note: Note that the binary version of the image is being downloaded. This is to ensure that the memory after
the image is loaded should match the contents of the file on the host. Loading SREC or ELF versions of
the image does not guarantee this since these formats may contain holes, leaving bytes in these holes in an
unknown state after the load, and thus causing a likely cksum difference. It is possible to use these, but then
the step verifying the cksum below may fail.

Once the image is loaded into RAM, it should be checksummed, thus verifying that the image on the target is
indeed the image intended to be loaded, and that no corruption of the image has happened. This is done using the
cksumcommand:

RedBoot> cksum
Computing cksum for area 0x06046800-0x06062fe8
POSIX cksum = 2535322412 116712 (0x971df32c 0x0001c7e8)

Compare the numbers with those for the binary version of the image on the host. If they do not match, try down-
loading the image again.

Assuming the cksum matches, the next step is programming the image into flash using the FIS commands.
Some platforms support locking (write protecting) certain regions of the flash, while others do not. If your platform

does not support locking, simply ignore thig unlock andfis lock steps (the commands will not be recognized by
RedBoot).

RedBoot> fis unlock RedBoot
. Unlock from 0x00000000-0x00020000: ..
RedBoot> fis create RedBoot

An image named 'RedBoot’ exists - continue (y/n)? y
* CAUTION * about to program 'RedBoot’
at 0x00000000..0x0001c7e7 from 0x06046800 - continue (y/n)? y

... Erase from 0x00000000-0x00020000: ..
... Program from 0x06046800-0x06062fe8 at 0x00000000: ..
. Erase from 0x00070000-0x00080000: .
... Program from 0x0606f000-0x0607f000 at 0x00070000: .
RedBoot> fis lock RedBoot
. Lock from 0x00000000-0x00020000: ..

Reboot; run the new RedBoot image

Once the image has been successfully written into the flash, simply reset the target and the new version of RedBoot
should be running.

When installing RedBoot for the first time, or after updating to a newer RedBoot with different configuration keys,
it is necessary to update the configuration directory in the flash usirfgaghig command. Sethe Section called
Persistent State Flash-based Configuration and Conmtr@hapter 2

81

Chapter 4. Updating RedBoot

82

Chapter 5. Installation and Testing

AM3x/MN103E010 Matsushita MN103E010 (AM33/2.0) ASB2305 Board

Overview

RedBoot supports the debug serial port and the built in ethernet port for communication and downloads. The
default serial port settings are 115200,8,N,1 with RTS/CTS flow control. RedBoot can run from either flash, and
can support flash management for either the boot PROM or the system flash regions.

The following RedBoot configurations are supported:

Configuration Mode Description File

PROM [ROM] RedBoot running from thefredboot ROM.ecm
boot PROM and able to

access the system flash.
FLASH [ROM] RedBoot running from thefredboot_FLASH.ecm
system flash and able to
access the boot PROM.
RAM [RAM] RedBoot running from [redboot RAM.ecm
RAM and able to access
the boot PROM.

Initial Installation

Unless a pre-programmed system flash module is available to be plugged into a new board, RedBoot must be
installed with the aid of a JTAG interface unit. To achieve this, the RAM mode RedBoot must be loaded directly
into RAM by JTAG and started, and thémat must be used to store the ROM mode RedBoot into the boot PROM.

These instructions assume that you have binary images of the RAM-based and boot PROM-based RedBoot images
available.

Preparing to program the board

If the board is to be programmed, whether via JTAG or RedBoot, some hardware settings need to be changed:

« Jumper across ST18 on the board to allow write access to the boot PROM.
+ Set DIP switch S1-3 to OFF to allow RedBoot to write to the system flash.

« Set the switch S5 (on the front of the board) to boot from whichever flasttiseing programmed. Note that the
RedBoot image cannot access the flash from which it is currently executing (it can only access the other flash).

83

Chapter 5. Installation and Testing

The RedBoot binary image files should also be copied to the TFTP pickup area on the host providing TFTP services
if that is how RedBoot should pick up the images it is going to program into the flash. Alternatively, the images
can be passed by YMODEM over the serial link.

Preparing to use the JTAG debugger
The JTAG debugger will also need setting up:

1.Install the JTAG debugger software (WICE103E) on a PC running Windows (WIinNT is probably the best
choice for this) in “C:/PanaX”.

2. Install the Matsushita provided “project” into the “C:/Panax/wice103e/prj” directory.

3. Install the RedBoot image files into the “C:/Panax/wice103e/prj” directory under the names redboot.ram and
redboot.prom.

4. Make sure the PC’s BIOS has the parallel port set to full bidirectional mode.
5. Connect the JTAG debugger to the PC’s parallel port.

6. Connect the JTAG debugger to the board.

7. Set the switch on the front of the board to boot from “boot PROM”.

8. Power up the JTAG debugger and then power up the board.

9. Connect the board’s Debug Serial port to a computer by a null modem cable.

10. Start minicom or some other serial communication software and set for 115200 baud, 1-N-8 with hardware
(RTS/CTS) flow control.

Loading the RAM-based RedBoot via JTAG
To perform the first half of the operation, the following steps should be followed:

1. Start the JTAG debugger software.
2. Run the following commands at the JTAG debugger’s prompt to set up the MMU registers on the CPU.

84

ed

ed
ed
ed
ed

ed
ed
ed
ed

ed
ed
ed
ed

0xc0002000,

0xd8c00100,
0xd8c00200,
0xd8c00204,
0xd8c00208,

0xd8c00110,
0xd8c00210,
0xd8c00214,
0xd8c00218,

0xd8c00120,
0xd8c00220,
0xd8c00224,
0xd8c00228,

0x12000580

0x8000fe01

0x21111000
0x00100200
0x00000004

0x8400fe01

0x21111000
0x00100200
0x00000004

0x8600ff81

0x21111000
0x00100200
0x00000004

ed
ed
ed
ed

ed
ed
ed
ed

ed
ed
ed
ed
ed

0xd8c00130,
0xd8c00230,
0xd8c00234,
0xd8c00238,

0xd8c00140,
0xd8c00240,
0xd8c00244,
0xd8c00248,

0xda000000,
0xda000004,
0xda000008,

0xda00000c,

0xda000000,

0x8680ff81

0x21111000
0x00100200
0x00000004

0x9800f801

0x00140000
0x11011100
0x01000001

0x55561645
0x000003c0
0x9000fe01
0x9200fe01
0xa89b0654

Chapter 5. Installation and Testing

3. Run the following commands at the JTAG debugger’s prompt to tell it what regions of the CPU’s address space
it can access:

ex 0xB80000000,0x81ffffff,/mexram
ex 0x84000000,0x85ffffff,/mexram
ex 0x86000000,0x867fffff,/mexram
ex 0x86800000,0x87ffffff,/mexram
ex 0x8c000000,0x8cffffff,/mexram
ex 0x90000000,0x93ffffff,/mexram

4. Instruct the debugger to load the RAM RedBoot image into RAM:

_pc=90000000
u_pc
rd redboot.ram,90000000

5. Load the boot PROM RedBoot into RAM:
rd redboot.prom,91020000

6. Start RedBoot in RAM:

g

Note that RedBoot may take some time to start up, as it will attempt to query a BOOTP or DHCP server to try
and automatically get an IP address for the board. Note, however, that it should send a plus over the serial port
immediately, and the 7-segment LEDs should display “rh 8”.

Loading the boot PROM-based RedBoot via the RAM mode RedBoot

Once the RAM mode RedBoot is up and running, it can be communicated with by way of the serial port. Commands
can now be entered directly to RedBoot for flashing the boot PROM.

85

Chapter 5. Installation and Testing

86

1. Instruct RedBoot to initialise the boot PROM:
RedBoot> fi init

2. Write the previously loaded redboot.prom image into the boot PROM:
RedBoot> fi write -f 0x80000000 -b 0x91020000 -I 0x00020000

3. Check that RedBoot has written the image:

RedBoot> dump -b 0x91020000
RedBoot> dump -b 0x80000000

Barring the difference in address, the two dumps should be the same.

4. Close the JTAG software and power-cycle the board. The RedBoot banners should be displayed again over the
serial port, followed by the RedBoot prompt. The boot PROM-based RedBoot will now be running.

5. Power off the board and unjumper ST18 to write-protect the contents of the boot PROM. Then power the board
back up.

6. Run the following command to initialise the system flash:
RedBoot> fi init

Then program the system flash based RedBoot into the system flash:

RedBoot> load -r -b %{FREEMEMLO} redboot FLASH.bin
RedBoot> fi write -f 0x84000000 -b %{FREEMEMLOQO} -l 0x00020000

NOTE: RedBoot arranges the flashes on booting such that they always appear at the same addresses, no
matter which one was booted from.

7. A similar sequence of commands can be used to program the boot PROM when RedBoot has been booted
from an image stored in the system flash.

RedBoot> load -r -b %{FREEMEMLO} /tftpboot/redboot ROM.bin
RedBoot> fi write -f 0x80000000 -b %{FREEMEMLOQO} -l 0x00020000

Seethe Section calledPersistent State Flash-based Configuration and CoritraChapter 2for details on
configuring the RedBoot in general, and athe Section calledrlash Image System (FI®) Chapter 2for
more details on programming the system flash.

Additional Commands

Theexeccommand which allows the loading and execution of Linux kernels, is supported for this architecture (see
the Section calle&Executing Programs from RedBdatChapter 2. Theexecparameters used for ASB2305 board
are:

Chapter 5. Installation and Testing

-w <time>

Wait time in seconds before starting kernel
-c "params”

Parameters passed to kernel
<addr>

Kernel entry point, defaulting to the entry point of the last image loaded

The parameter string is stored in the on-chip memory at location 0x8C001000, and is prefixed by “cmdline:” if it

was supplied.

Memory Maps

RedBoot sets up the following memory map on the ASB2305 board.

NOTE: The regions mapped between 0x80000000-0x9FFFFFFF are cached by the CPU. However, all those
regions can be accessed uncached by adding 0x20000000 to the address.

Physical Address Range

Description

0x80000000 - OX9FFFFFFF Cached Region

0x80000000 - O0x81FFFFFF Boot PROM

0x84000000 - Ox85FFFFFF System Flash

0x86000000 - 0x86007FFF 64Kbit Sys Config EEPROM
0x86F90000 - 0x86F90003 4x 7-segment LEDs

0x86FA0000 - Ox86FA0003 Software DIP Switches
0x86FB0000 - Ox86FBO01F PC16550 Debug Serial Port
0x8C000000 - Ox8FFFFFFF On-Chip Memory (repeated 16Kb SRAM)
0x90000000 - Ox93FFFFFF SDRAM

0x98000000 - Ox9BFFFFFF Paged PClI Memory Space (64Mb)
0x9C000000 - Ox9DFFFFFF PCI Local SRAM (32Mb)
O0X9E000000 - OX9EO3FFFF PCI I/O Space

0x9E040000 - OXx9EO0400FF AM33-PCI Bridge Registers
OX9FFFFFF4 - OX9FFFFFF7 PCl Memory Page Register
Ox9FFFFFF8 - Ox9FFFFFFF PCIl Config Registers

0xA0000000 - OXxBFFFFFFF Uncached Mirror Region
0xC0000000 - OxDFFFFFFF CPU Control Registers

The ASB2305 HAL makes use of the on-chip memory in the following way:

0x8C000000 - Ox8COOOOFF hal_vsr_table

0x8C000100 - Ox8CO001FF hal_virtual_vector_table

0x8C001000 - Linux command line (RedBoot exec command)
- Ox8CO03FFF Emergency DoubleFault Exception Stack

Currently the CPU’s interrupt table lies at the beginning of the RedBoot image, which must therefore be aligned to
a OxFF000000 mask.

87

Chapter 5. Installation and Testing

Rebuilding RedBoot

These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described @hapter 3

export TARGET=asbh2305
export ARCH_DIR=mn10300
export PLATFORM_DIR=asb2305

The names of configuration files are listed above with the description of the associated modes.

ARM/ARM7 ARM Evaluator7T

88

Overview

RedBoot supports both serial ports for communication and downloads. The default serial port settings are
38400,8,N,1.

The following RedBoot configurations are supported:

Configuration Mode Description File

ROM [ROM] RedBoot running from [redboot ROMA.ecm
flash address 0x20000,
with ARM Boot Monitor in
flash boot sector.

Initial Installation

RedBoot is installed using the on-board boot environment. See the user manual for full details.

Quick download instructions

Here are quick start instructions for downloading the prebuilt Redboot image:

- Boot the board and press ENTER:

ARM Evaluator7T Boot Monitor PreRelease 1.00
Press ENTER within 2 seconds to stop autoboot
Boot:

- Erase the part of the flash where RedBoot will get programmed:
Boot: flasherase 01820000 10000

Chapter 5. Installation and Testing

+ Prepare to download the UU-encoded version of the RedBoot image:

Boot: download 10000
Ready to download. Use 'transmit’ option on terminal emulator to download file.

- Either use ASCII transmit option in the terminal emulator, or on Linux, simply cat the file to the serial port:
$ cat redboot.UU > /dev/ttySO
When complete, you should see:
Loaded file redboot.bin at address 000100000, size = 41960
Boot:
« Program the flash:
Boot: flashwrite 01820000 10000 10000

« And verify that the module is available:

Boot: rommodules

Header Base Limit
018057c8 01800000 018059e7 BootStrapLoader v1.0 Apr 27 2000 10:33:58
01828f24 01820000 0182a3e8 RedBoot Apr 5 2001

+ Reboot the board and you should see the RedBoot banner.

Special RedBoot Commands

None.

Memory Maps

RedBoot sets up the following memory map on the E7T board.

NOTE: The virtual memory maps in this section use a C and B column to indicate whether or not the region is
cached (C) or buffered (B).

Physical Address Range C B Description
0x00000000 - 0x0007ffff Y N SDRAM

0x03ff0000 - Ox03ffffff N N Microcontroller registers
0x01820000 - 0x0187ffff N N System flash (mirrored)

89

Chapter 5. Installation and Testing

Rebuilding RedBoot

These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described @hapter 3

export TARGET=e7t
export ARCH_DIR=arm
export PLATFORM_DIR=e7t

The names of configuration files are listed above with the description of the associated modes.

ARM/ARM7+ARM9 ARM Integrator

Overview

RedBoot supports both serial ports for communication and downloads. The default serial port settings are
38400,8,N,1.

The following RedBoot configurations are supported:

Configuration Mode Description File

ROM [ROM] RedBoot running from theredboot ROM.ecm
board’s flash boot sector.

RAM [RAM] RedBoot running from [redboot RAM.ecm

RAM with RedBoot in the
flash boot sector.
ROMRAM [ROMRAM] RedBoot running from redboot ROMRAM.ecm
RAM, but contained in the
board’s flash boot sector.

Initial Installation

RedBoot is installed using the on-board bootPROM environment. See the user manual for full details.

Quick download instructions

Here are quick start instructions for downloading the prebuilt Redboot image:

« Set DIP switch S1[1] to the ON position and reset or power the board up. You will see the bootPROM startup
message on serial port A (J14):

Initialising...

90

Chapter 5. Installation and Testing

ARM bootPROM [Version 1.3] Rebuilt on Jun 26 2001 at 22:04:10
Running on a Integrator Evaluation Board

Board Revision V1.0, ARM966E-S Processor

Memory Size is 16MBytes, Flash Size is 32MBytes

Copyright (c) ARM Limited 1999 - 2001. All rights reserved.

Board designed by ARM Limited

Hardware support provided at http://www.arm.com/

For help on the available commands type ? or h

boot Monitor >

« Issue the FLASH ROM load command:

boot Monitor > L
Load Motorola S-Records into flash

Deleting Image 0

The S-Record loader only accepts input on the serial port.
Type Ctrl/C to exit loader.

- Either use the ASCII transmit option in the terminal emulator, or on Linux, simply cat the file to the serial port:
$ cat redboot.srec > /dev/ttySO

When complete, type Ctrl-C and you should see something similar to:

Downloaded 5,394 records in 81 seconds.

Overwritten block/s
0

boot Monitor >

+ Set DIP switch S1[1] to the OFF position and reboot the board and you should see the RedBoot banner.

Special RedBoot Commands

None.

Memory Maps

RedBoot sets up the following memory map on the Integrator board.

NOTE: The virtual memory maps in this section use a C and B column to indicate whether or not the region is
cached (C) or buffered (B).

91

Chapter 5. Installation and Testing

ARM7TDMI

Physical Address Range C B Description

0x00000000 - O0x0007ffff N N SSRAM

0x00080000 - OxoOfffffff N N SDRAM (depends on part fitted)
0x10000000 - Ox1fffffff N N System control and peripheral registers
0x20000000 - Ox23fffffft N N Boot ROM (contains boot Monitor)
0x24000000 - Ox27ffffff N N FLASH ROM (contains RedBoot)
0x28000000 - Ox2bffffff N N SSRAM echo area

0x40000000 - Ox5fffffff N N PCI Memory access windows
0x60000000 - Ox60ffffff N N PCI IO access window

0x61000000 - Ox61ffffff N N PCI config space window

0x62000000 - 0x6200ffff N N PCI bridge register window
0x80000000 - Oxsfffffff N N SDRAM echo area (used for PCI accesses)

ARMO966E

0x00000000 - Ox000fffff N N SSRAM

0x00100000 - OxOfffffff N N SDRAM (depends on part fitted)
0x10000000 - Oxifffffff N N System control and peripheral registers
0x20000000 - Ox23fffffft N N Boot ROM (contains boot Monitor)
0x24000000 - Ox27ffffff N N FLASH ROM (contains RedBoot)
0x28000000 - Ox2bffffff N N SSRAM echo area

0x40000000 - Ox5fffffff N N PCI Memory access windows
0x60000000 - Ox60ffffff N N PCI IO access window

0x61000000 - Ox6iffffff N N PCI config space window

0x62000000 - 0x6200ffff N N PCI bridge register window
0x80000000 - Oxsfffffff N N SDRAM echo area (used for PCI accesses)

Rebuilding RedBoot

These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described @hapter 3

export TARGET=integrator
export ARCH_DIR=arm
export PLATFORM_DIR=integrator

The names of configuration files are listed above with the description of the associated modes.

92

Chapter 5. Installation and Testing

ARM/ARM7+ARM9 ARM PID Board and EPI Dev7+Dev9

Overview

RedBoot uses either of the serial ports. The default serial port settings are 38400,8,N,1. Management of onboard
flash is also supported.

The following RedBoot configurations are supported:

Configuration Mode Description File

ROM [ROM] RedBoot running from theredboot_ ROM.ecm
board’s flash boot sector.

RAM [RAM] RedBoot running from redboot_RAM.ecm
RAM with RedBoot in the
flash boot sector.

Initial Installation Method
Device programmer is used to program socketed flash parts with ROM version of RedBoot.

Alternatively, to install RedBoot on a target that already has eCos GDB stubs, download the RAM mode image of
RedBoot and run it. Initialize the flash image directdig:init Then download the ROM version of RedBoot and
program it into flash:

RedBoot> load -b %{FREEMEMLO} -m ymodem
RedBoot> fi cr RedBoot

Special RedBoot Commands

None.

Memory Maps

RedBoot sets up the following memory map on the PID board.

Physical Address Range Description

0x00000000 - 0x0007ffff DRAM

0x04000000 - 0x04080000 flash

0x08000000 - Ox09ffffff ASB Expansion

0x0a000000 - OxObffffff APB Reference Peripheral

0x0c000000 - OxOfffffff NISA Serial, Parallel and PC Card ports

93

Chapter 5. Installation and Testing

Rebuilding RedBoot

These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described @hapter 3

export TARGET=pid

export ARCH_DIR=arm
export PLATFORM_DIR=pid

The names of configuration files are listed above with the description of the associated modes.

ARM/ARM7 Atmel AT91 Evaluation Board (EB40)

94

Overview

RedBoot supports both serial ports. The default serial port settings are 38400,8,N,1. RedBoot also supports minimal
flash management on the EB40. However, since the flash device (AT29LV1024) is so small (only the upper 64K is
available for general use), only the simple flash write command ’fis write’ is supported.

The following RedBoot configurations are supported:

Configuration Mode Description File

ROM [ROM] RedBoot running from theredboot ROM.ecm
board’s flash boot sector.

RAM [RAM] RedBoot running from redboot RAM.ecm

RAM with RedBoot in the
flash boot sector.
ROMRAM [ROMRAM] RedBoot running from redboot ROMRAM.ecm
RAM, but contained in the
board’s flash boot sector.

Initial Installation Method

This development board comes with ARM’s debug tool, Angel, installed in flash. At this time, Angel will not be
replaced. Rather, RedBoot will be placed in the alternate half of flash. Switch SW1 is used which monitor to boot.
Selecting SW1 to "lower mem" will choose Angel. Select SW1 to "Upper mem" for RedBoot once it has been
installed.

Set SW1 to "lower mem" and connect serial port A to a host computer. Using GDB from the host and Angel on
the board, download the RAM mode image of RedBoot to the board. SW1 should then be set to "upper mem" just
before starting RedBoot using the 'cont’ command. Once RedBoot is started, the Angel session must be interrupted
(on Linux this can be done using ~Z). Follow this by connecting to the board using minicom at 38400-8N1. At this
point, RedBoot will be running on the board in RAM. Now, download the ROMRAM mode image and program it

Chapter 5. Installation and Testing

to flash.

arm-elf-gdb redboot_ RAM.elf

(gdb) tar rdi s=/dev/ttySO

Angel Debug Monitor (serial) 1.04 (Advanced RISC Machines SDT 2.5) for
AT91EB40 (2.00)

Angel Debug Monitor rebuilt on Apr 07 2000 at 12:40:31
Serial Rate: 9600

Connected to ARM RDI target.

(gdb) set $cpsr=0xd3

(gdb) load

Loading section .rom_vectors, size 0x40 Ima 0x2020000
Loading section .text, size 0x7fd8 Ima 0x2020040
Loading section .rodata, size Ox15a0 Ima 0x2028018
Loading section .data, size 0x2e4 Ima 0x20295b8

Start address 0x2020040 , load size 39068

Transfer rate: 6250 bits/sec, 500 bytes/write.

At this point, set SW1 to "upper mem".

(gdb) cont
Continuing.

At this point, suspend the GDB session (use Ctrl-Z) and start a terminal emulator:
RedBoot> version

RedBoot(tm) bootstrap and debug environment [RAM]
Non-certified release, version UNKNOWN - built 14:09:27, Jul 20 2001

Platform: Atmel AT91/EB40 (ARM7TDMI)
Copyright (C) 2000, 2001, Red Hat, Inc.

RAM: 0x02000000-0x02080000, 0x020116d8-0x0207fd00 available
FLASH: 0x01010000 - 0x01020000, 256 blocks of 0x00000100 bytes each.

RedBoot> load -m ymodem -b %{FREEMEMLO}

Use minicom to send the file redboot ROMRAM.srec via YModem.

RedBoot> fi wr -f 0x01010000 -b %{FREEMEMLO} -I Oxel00

Press the "reset" pushbutton and RedBoot should come up on the board.

Special RedBoot Commands

None.

95

Chapter 5. Installation and Testing

Memory Maps

This processor has no MMU, so the only memory map is for physical addresses.

Physical Address Range Description

0x00000000 - 0x00000fff On-chip SRAM
0x01000000 - 0x0101ffff Flash
0x02000000 - 0x0207ffff RAM
0xffe00000 - Oxffffffff I/O registers

The flash based RedBoot image occupies virtual addresses 0x01010000 - 0x0101dfff

Rebuilding RedBoot

These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described i@hapter 3

export TARGET=eb40
export ARCH_DIR=arm
export PLATFORM_DIR=at91

The names of configuration files are listed above with the description of the associated modes.

ARM/ARMY Cirrus Logic EP7xxx (EDB7211, EDB7212, EDB7312)

96

Overview

RedBoot supports both serial ports on the board and the ethernet port. The default serial port settings are
38400,8,N,1. RedBoot also supports flash management on the EDB7xxx for the NOR flash only.

The following RedBoot configurations are supported:

Configuration Mode Description File

ROM [ROM] RedBoot running from theredboot ROM.ecm
board’s flash boot sector.

RAM [RAM] RedBoot running from [redboot RAM.ecm

RAM with RedBoot in the
flash boot sector.

ROMRAM [ROMRAM] RedBoot running from redboot ROMRAM.ecm
RAM, but contained in the
board’s flash boot sector
(EDB7312 only).

Chapter 5. Installation and Testing

Initial Installation Method

A Windows or Linux utility is used to program flash using serial port #1 via on-chip programming firmware. See
board documentation for details on in situ flash programming.

Special RedBoot Commands

None.

Memory Maps
The MMU page tables and LCD display buffer, if enabled, are located at the end of DRAM.

NOTE: The virtual memory maps in this section use a C and B column to indicate whether or not the region is
cached (C) or buffered (B).

Physical Address Range Description

0x00000000 - OxO1ffffff NOR Flash (EDB7211, EDB7212)
0x00000000 - OxOOffffff NOR Flash (EDB7312)
0x10000000 - Ox11ffffff NAND Flash

0x20000000 - Ox2fffffff Expansion 2

0x30000000 - Ox3fffffff Expansion 3

0x40000000 - OxAfffffff PCMCIA 0

0x50000000 - Ox5fffffff PCMCIA 1

0x60000000 - 0x600007ff On-chip SRAM
0x80000000 - Ox8fffffff I/O registers

0xc0000000 - OxcAffffff DRAM (EDB7211, EDB7212)
0xc0000000 - OxcOffffff DRAM (EDB7312)

Virtual Address Range C B Description

0x00000000 - OxOiffffff Y Y DRAM
0x00000000 - OxOofcffff Y Y DRAM (EDB7312)
0x20000000 - Ox2fffffff N N Expansion 2
0x30000000 - Ox3fffffff N N Expansion 3
0x40000000 - Ox4fffffff N N PCMCIA O
0x50000000 - Ox5fffffff N N PCMCIA 1

0x60000000 - 0x600007ff Y Y On-chip SRAM

0x80000000 - Oxsfffffff N N /O registers

0xc0000000 - OxcOO0iffff N Y LCD buffer (if configured)
0xe0000000 - Oxeilffffff Y Y NOR Flash (EDB7211, EDB7212)
0xe0000000 - OxeOffffff Y Y NOR Flash (EDB7312)
0xfO000000 - Oxfiffffff Y Y NAND Flash

The flash based RedBoot image occupies virtual addresses 0xe0000000 - OxeOO3ffff.

97

Chapter 5. Installation and Testing

Platform Resource Usage

The EP7xxx timer #2 is used as a polled timer to provide timeout support for network and XModem file transfers.

Rebuilding RedBoot

These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described @hapter 3

export TARGET=edb7211

export TARGET=edb7212

export TARGET=edb7312

export ARCH_DIR=arm

export PLATFORM_DIR=edb7xxx

Use one of the TARGET settings only.

The names of configuration files are listed above with the description of the associated modes.

ARM/ARM9 Agilent AAED2000

98

Overview

RedBoot supports the serial and ethernet ports on the board. The default serial port settings are 38400,8,N,1.
RedBoot also supports flash management on the AAED2000.

The following RedBoot configurations are supported:

Configuration Mode Description File
ROMRAM [ROMRAM] RedBoot running from redboot_primary ROMRAM.ecm
RAM, but contained in the
board’s flash boot sector.
RAM [RAM] RedBoot running from redboot_primary RAM.ecm
RAM with RedBoot in the
flash boot sector.

Initial Installation Method

It is possible to install RedBoot in one of two ways. Either as the primary bootmonitor on the board (installed to
blocks 0-1 of the flash) or as the secondary bootmonitor on the board (installed to blocks 1-2 of the flash).

Presently, only the former method is supported.

Chapter 5. Installation and Testing

RedBoot as Primary Bootmonitor
RedBoot is installed in flash using the on-board ARM Boot Monitor.
Boot the board while pressing SPACE. This should bring up the Boot Monitor:

ARM bootPROM [Version 1.3] Rebuilt on Jul 16 2001 at 16:21:36
Running on a P920 board Evaluation Board

Board Revision V1.0, ARM920T processor Processor

Memory Size is 32MBytes, Flash Size is 32MBytes

Copyright (c) ARM Limited 1999 - 2001. All rights reserved.
Board designed by ARM Limited

Hardware support provided at http://www.arm.com/

For help on the available commands type ? or h

boot Monitor >

Download the RAM mode image of RedBoot configured as a primary bootmonitor using the ARM bootmonitor’s
SREC-download command:

boot Monitor > m

Load Motorola S-Record image into memory and execute it

The S-Record loader only accepts input on the serial port.
Record addresses must be between 0x00008000 and Ox01EOF510.
Type Ctrl/C to exit loader.

Use the terminal emulator's ASCII upload command, or (on Linux) simply cat the file to the serial port:

$ cat redboot_primary_RAM/redboot.srec >/dev/ttyS1

You should see RedBoot start up:

FLASH configuration checksum error or invalid key
Ethernet ethO: MAC address 00:30:d3:03:04:99
IP: 192.168.42.111, Default server: 192.168.42.3

RedBoot(tm) bootstrap and debug environment [RAM]
Non-certified release, version UNKNOWN - built 13:15:40, Nov 9 2001

Platform: AAED2000 system (ARM9) [Primary]
Copyright (C) 2000, 2001, Red Hat, Inc.

RAM: 0x00000000-0x01f80000, 0x0006f208-0x01f51000 available
FLASH: 0x60000000 - 0x62000000, 256 blocks of 0x00020000 bytes each.
RedBoot>

As can be seen from the output above, the network has been configured to give the board an IP address and
information about the default server. If things are not set up on your network, you can still continue, but use the
Y-modem download method when loading the RedBoot ROMRAM mode image. Now initialize RedBoot's FIS:

RedBoot > fis init
About to initialize [format] FLASH image system - continue (y/n)? y
*** |nitialize FLASH Image System
Warning: device contents not erased, some blocks may not be usable
. Erase from 0x61fe0000-0x62000000: .
. Program from 0x01f5f000-0x01f5f300 at 0x61fe0000: .

99

Chapter 5. Installation and Testing

Download the ROMRAM mode image of RedBoot via ethernet:
RedBoot > load -b %{FREEMEMLO} redboot_primary_ROMRAM/redboot.srec
or using serial Y-modem protocol:

RedBoot > load -mode ymodem -b %{FREEMEMLO}

(Use the terminal emulator's Y-modem upload command to send the filed-
boot_primary_ ROMRAM/redboot.srec .) When the image has been downloaded, program it into
flash:

Address offset = 0x00ff8000
Entry point: 0x00008040, address range: 0x00008000-0x0002da80
RedBoot > fi cr RedBoot

An image named 'RedBoot’ exists - continue (y/n)? y
* CAUTION * about to program 'RedBoot’
at 0x60000000..0x6003ffff from 0x00100000 - continue (y/n)? y

... Erase from 0x60000000-0x60040000: ..
... Program from 0x00100000-0x00140000 at 0x60000000: ..
... Erase from 0x61fe0000-0x62000000: .

. Program from 0x01f5f000-0x01f7f0O00 at Ox61fe0000: .

Now reset the board. You should see the RedBoot banner.

Special RedBoot Commands

The execcommand which allows the loading and execution of Linux kernels, is supported for this boatlgsee
Section calledExecuting Programs from RedBadatChapter 2. Theexecparameters used for the AAED2000 are:

-b <addr>
Location Linux kernel was loaded to
-l <len>
Length of kernel
-Cc "params”
Parameters passed to kernel
-r <addr>
‘initrd’ ramdisk location
-s<len>

Length of initrd ramdisk

The parameters for kernel image base and size are automatically set after a load operation. So one way of starting
the kernel would be:

RedBoot > load -r -b 0x100000 zlmage

100

Chapter 5. Installation and Testing

Raw file loaded 0x00100000-0x001a3d6c

RedBoot > exec -c "console=ttyACO0,38400"

Using base address 0x00100000 and length 0x000a3d6c
Uncompressing Linux.....

An image could also be put in flash and started directly:

RedBoot > exec -b 0x60040000 -I 0xcO000 -c "console=ttyACO0,38400"
Uncompressing Linux.....

Memory Maps
The MMU page tables are located at 0x4000.

NOTE: The virtual memory maps in this section use a C and B column to indicate whether or not the region is
cached (C) or buffered (B).

Physical Address Range Description

0x00000000 - OxO1ffffff Flash

0x10000000 - 0x100fffff Ethernet

0x30000000 - 0x300fffff Board registers
0x40000000 - OxA4fffffff PCMCIA Slot (0)
0x50000000 - Oxb5fffffff Compact Flash Slot (1)
0x80000000 - 0x800037ff /O registers
0xb0060000 - O0xbOOfffff On-chip SRAM
0xfO000000 - Oxfd3fffff SDRAM

Virtual Address Range C B Description

0x00000000 - Ox01f7ffff Y Y SDRAM

0x01f80000 - OxOiffffff Y Y SDRAM (used for LCD frame buffer)
0x10000000 - Ox100fffff N N Ethernet

0x30000000 - Ox300fffff N N Board registers

0x40000000 - Ox4fffffff N N PCMCIA Slot (0)

0x50000000 - Ox5fffffff N N Compact Flash Slot (1)

0x60000000 - Ox61ffffff N N Flash

0x80000000 - 0x800037ff N N /O registers

0xf0000000 - Oxffffffff N N SDRAM (uncached)

Rebuilding RedBoot

These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described @hapter 3

export TARGET=aaed

101

Chapter 5. Installation and Testing

export ARCH_DIR=arm
export PLATFORM_DIR=arm9/aaed2000

The names of configuration files are listed above with the description of the associated modes.

ARM/ARMO9 Altera Excalibur

Overview

RedBoot supports the serial port labelled P2 on the board. The default serial port settings are 57600,8,N,1. RedBoot
also supports flash management on the Excalibur.

The following RedBoot configurations are supported:

Configuration Mode Description File

ROMRAM [ROMRAM] RedBoot running from redboot ROMRAM.ecm
RAM, but contained in the
board’s flash boot sector.
RAM [RAM] RedBoot running from redboot_RAM.ecm
RAM with RedBoot in the
flash boot sector.
REDBOOT [ROMRAM] RedBoot running from topfredboot REDBOOT.ecm
of RAM, but contained in
the board’s flash boot
sector.

NOTE: RedBoot is currently hardwired to use a 128MB SDRAM SIMM module.

Initial Installation Method

A Windows utility (exc_flash_programmer.exe) is used to program flash using the ByteBlasterMV JTAG unit. See
board documentation for details on in situ flash programming.

For ethernet to work (under Linux) the following jumper settings should be used on a REV 2 board:

SW2-9 :OFF
ui79 :2-3
JP14-18 : OPEN
JP40-41 : 2-3
JP51-55 : 2-3

102

Chapter 5. Installation and Testing

Flash management

The ROMRAM and REDBOOT configurations supported on this platform differ only in the memory layout
(ROMRAM configuration runs RedBoot from 0x00008000 while REDBOOT configuration runs RedBoot from
0x07f80000). The REDBOOQOT configuration allows applications to be loaded and run from address 0x00008000.

Special RedBoot Commands

The execcommand which allows the loading and execution of Linux kernels, is supported for this boatlgsee
Section calledExecuting Programs from RedBdatChapter 2. Theexecparameters used for the Excalibur are:

-b <addr>
Location Linux kernel was loaded to
-l <len>
Length of kernel
-c "params”
Parameters passed to kernel
-r <addr>
'initrd’ ramdisk location
-s<len>

Length of initrd ramdisk

The parameters for kernel image base and size are automatically set after a load operation. So one way of starting
the kernel would be:

RedBoot > load -r -b 0x100000 zlmage

Raw file loaded 0x00100000-0x001a3d6c

RedBoot > exec -c "console=ttyUA0,57600"

Using base address 0x00100000 and length 0x000a3d6c
Uncompressing Linux.....

An image could also be put in flash and started directly:

RedBoot > exec -b 0x40400000 -I 0xc0000 -c “"console=ttyUA0,57600"
Uncompressing Linux.....

103

Chapter 5. Installation and Testing

Memory Maps
The MMU page tables are located at 0x4000.

NOTE: The virtual memory maps in this section use a C and B column to indicate whether or not the region is
cached (C) or buffered (B).

Physical Address Range Description

0x00000000 - OxOT7ffffff SDRAM
0x08000000 - 0x0805ffff On-chip SRAM
0x40000000 - Ox4Offffff Flash
0x7fffc000 - OXT7fffffff I/O registers
0x80000000 - OxB800Iffff PLD

Virtual Address Range C B Description
0x00000000 - OxO7ffffff Y Y SDRAM
0x08000000 - 0x0805ffff Y Y On-chip SRAM
0x40000000 - 0x403fffff N Y Flash
Ox7fffcO00 - Ox7fffffff N N 1/O registers
0x80000000 - 0x8001ffff N N PLD

Rebuilding RedBoot

These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described @hapter 3

export TARGET=excalibur_arm9
export ARCH_DIR=arm
export PLATFORM_DIR=arm9/excalibur

The names of configuration files are listed above with the description of the associated modes.

ARM/StrongARM(SA110) Intel EBSA 285

Overview

RedBoot uses the single EBSA-285 serial port. The default serial port settings are 38400,8,N,1. If the EBSA-285
is used as a host on a PCI backplane, ethernet is supported using an Intel PRO/100+ ethernet adapter. Management
of onboard flash is also supported.

The following RedBoot configurations are supported:

104

Chapter 5. Installation and Testing

Configuration Mode Description File

ROM [ROM] RedBoot running from theredboot_ ROM.ecm
board’s flash boot sector.

RAM [RAM] RedBoot running from redboot RAM.ecm
RAM with RedBoot in the
flash boot sector.

Initial Installation Method

A linux application is used to program the flash over the PCI bus. Sources and build instructions for this utility are
located in the RedBoot sources paickages/hal/arm/ebsa285/current/support/linux/safl_util

Communication Channels
Serial, Intel PRO 10/100+ 82559 PCI ethernet card.

Special RedBoot Commands

None.

Memory Maps

Physical and virtual mapping are mapped one to one on the EBSA-285 using a first level page table located at
address 0x4000. No second level tables are used.

NOTE: The virtual memory maps in this section use a C and B column to indicate whether or not the region is
cached (C) or buffered (B).

Address Range C B Description

0x00000000 - OxOiffffff Y Y SDRAM

0x40000000 - Ox400fffff N N 21285 Registers
0x41000000 - Ox413fffff Y N flash

0x42000000 - Ox420fffff N N 21285 CSR Space
0x50000000 - Ox50ffffff Y Y Cache Clean
0x78000000 - Ox7sfffffft N N Outbound Write Flush
0x79000000 - Ox7cOfffff N N PCI IACK/Config/lO
0x80000000 - Oxffffffff N Y PCI Memory

105

Chapter 5. Installation and Testing

Platform Resource Usage

Timer3 is used as a polled timer to provide timeout support for networking and XModem file transfers.

Rebuilding RedBoot

These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described @hapter 3

export TARGET=ebsa285
export ARCH_DIR=arm
export PLATFORM_DIR=ebsa285

The names of configuration files are listed above with the description of the associated modes.

ARM/StrongARM(SA1100) Intel Brutus

Overview

RedBoot supports both board serial ports on the Brutus board. The default serial port settings are 38400,8,N,1.
flash management is not currently supported.

The following RedBoot configurations are supported:

Configuration Mode Description File

ROM [ROM] RedBoot running from theredboot_ ROM.ecm
board’s flash boot sector.

RAM [RAM] RedBoot running from redboot_RAM.ecm
RAM with RedBoot in the
flash boot sector.

Initial Installation Method

Device programmer is used to program socketed flash parts.

Special RedBoot Commands

None.

106

Chapter 5. Installation and Testing

Memory Maps

The first level page table is located at physical address 0xc0004000. No second level tables are used.

NOTE: The virtual memory maps in this section use a C and B column to indicate whether or not the region is
cached (C) or buffered (B).

Physical Address Range Description

0x00000000 - OxO00Offfff Boot ROM
0x08000000 - Ox083fffff Application flash
0x10000000 - Ox10Offfff SRAM
0x18000000 - Ox18O0fffff Chip Select 3
0x20000000 - Ox3fffffff PCMCIA
0x80000000 - Oxbfffffff SA-1100 Internal Registers
0xc0000000 - OxcTffffff DRAM Bank 0
0xc8000000 - Oxcfffffff DRAM Bank 1
0xd0000000 - Oxd7ffffff DRAM Bank 2
0xd8000000 - Oxdfffffff DRAM Bank 3
0xe0000000 - OxeTffffff Cache Clean

Virtual Address Range C B Description
0x00000000 - Ox003fffff Y Y DRAM Bank 0
0x00400000 - Ox007fffff Y Y DRAM Bank 1
0x00800000 - Ox00bfffff Y Y DRAM Bank 2

YY

YY

Y N

0x00c00000 - OxOOffffff DRAM Bank 3
0x08000000 - Ox083fffff Application flash
0x10000000 - Ox10O0fffff SRAM

0x20000000 - Ox3fffffff N N PCMCIA

0x40000000 - 0x400fffff Y Y Boot ROM

0x80000000 - Oxbfffffff N N SA-1100 Internal Registers
0xe0000000 - Oxe7ffffff Y Y Cache Clean

Platform Resource Usage

The SA11x0 OS timer is used as a polled timer to provide timeout support for XModem file transfers.

Rebuilding RedBoot

These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described @hapter 3

export TARGET=brutus
export ARCH_DIR=arm
export PLATFORM_DIR=sallx0/brutus

107

Chapter 5. Installation and Testing

The names of configuration files are listed above with the description of the associated modes.

ARM/StrongARM(SA1100) Intel SA1100 Multimedia Board

Overview

RedBoot supports both board serial ports. The default serial port settings are 38400,8,N,1. flash management is
also supported.

The following RedBoot configurations are supported:

Configuration Mode Description File

ROM [ROM] RedBoot running from theredboot_ ROM.ecm
board’s flash boot sector.

RAM [RAM] RedBoot running from redboot_RAM.ecm
RAM with RedBoot in the
flash boot sector.

Initial Installation Method

A device programmer is used to program socketed flash parts.

Special RedBoot Commands

None.

Memory Maps

The first level page table is located at physical address 0xc0004000. No second level tables are used.

NOTE: The virtual memory maps in this section use a C and B column to indicate whether or not the region is
cached (C) or buffered (B).

Physical Address Range Description

0x00000000 - OxO00Offfff Boot flash

0x08000000 - Ox083fffff Application flash
0x10000000 - Ox1O07fffff SA-1101 Board Registers
0x18000000 - 0x18O0fffff Ct8020 DSP
0x18400000 - 0x184fffff XBusReg

0x18800000 - 0x188fffff SysRegA

0x18c00000 - Ox18cfffff SysRegB

108

Chapter 5. Installation and Testing

0x19000000 - Ox193fffff Spare CPLD A
0x19400000 - Ox197fffff Spare CPLD B
0x20000000 - Ox3fffffff PCMCIA

0x80000000 - Oxbfffffff SA1100 Internal Registers
0xc0000000 - OxcOTfffff DRAM Bank 0
0xe0000000 - OxeTffffff Cache Clean

Virtual Address Range C B Description

0x19000000 - Ox193fffff Spare CPLD A
0x19400000 - 0x197fffff Spare CPLD B
0x20000000 - Ox3fffffff N N PCMCIA

0x50000000 - Ox500fffff Y Y Boot flash

0x80000000 - Oxbfffffff N N SA1100 Internal Registers
0xc0000000 - OxcO7fffff N Y DRAM Bank 0
0xe0000000 - Oxe7ffffff Y Y Cache Clean

0x00000000 - OxQO07fffff Y Y DRAM Bank O
0x08000000 - Ox083fffff Y Y Application flash
0x10000000 - Ox1O00fffff N N SA-1101 Registers
0x18000000 - 0x180fffff N N Ct8020 DSP
0x18400000 - Ox184fffff N N XBusReg
0x18800000 - Ox188fffff N N SysRegA
0x18c00000 - Ox18cfffff N N SysRegB

N N

N N

Platform Resource Usage

The SA11x0 OS timer is used as a polled timer to provide timeout support for XModem file transfers.

Rebuilding RedBoot

These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described @hapter 3

export TARGET=sal100mm
export ARCH_DIR=arm
export PLATFORM_DIR=sal1x0/sal100mm

The names of configuration files are listed above with the description of the associated modes.

109

Chapter 5. Installation and Testing

ARM/StrongARM(SA1110) Intel SA1110 (Assabet)

110

Overview

RedBoot supports the board serial port and the compact flash ethernet port. The default serial port settings are
38400,8,N,1. RedBoot also supports flash management on the Assabet.

The following RedBoot configurations are supported:

Configuration Mode Description File

ROM [ROM] RedBoot running from theredboot_ ROM.ecm
board’s flash boot sector.

RAM [RAM] RedBoot running from redboot_RAM.ecm
RAM with RedBoot in the
flash boot sector.

Initial Installation Method

A Windows or Linux utility is used to program flash over parallel port driven JTAG interface. See board documen-
tation for details on in situ flash programming.

The flash parts are also socketed and may be programmed in a suitable device programmer.

Special RedBoot Commands

None.

Memory Maps

The first level page table is located at physical address 0xc0004000. No second level tables are used.

NOTE: The virtual memory maps in this section use a C and B column to indicate whether or not the region is
cached (C) or buffered (B).

Physical Address Range Description

0x00000000 - OxO7ffffff flash

0x08000000 - OxOfffffff SA-1111 Board flash
0x10000000 - Ox17ffffff Board Registers
0x18000000 - OxAfffffff Ethernet

0x20000000 - Ox2fffffff SA-1111 Board PCMCIA
0x30000000 - Ox3fffffff Compact Flash
0x40000000 - OxA4T7ffffff SA-1111 Board
0x48000000 - Ox4bffffff GFX

0x80000000 - Oxbfffffff SA-1110 Internal Registers

0xc0000000
0xc8000000
0xd0000000
0xd8000000
0xe0000000

Oxc7ffffff
Oxcfffffff
Oxd7ffffff
Oxdfffffff
Oxe7ffffff

Virtual Address Range

0x00000000
0x08000000
0x10000000
0x18000000
0x20000000
0x30000000
0x40000000
0x48000000
0x50000000
0x80000000
0xc0000000
0xe0000000

OxO01ffffff
OxOfffffff
Ox 1 7ffffff
Ox A fffffff
Ox2fffffff
Ox 3fffffff
OxA47ffffff
OxA4bffffff
Ox57ffffff
Oxbfffffff
Oxcffffff
Oxe7ffffff

DRAM Bank 0
DRAM Bank 1
DRAM Bank 2
DRAM Bank 3
Cache Clean

C B Description

DRAM Bank 0

SA-1111 Board flash
Board Registers
Ethernet

SA-1111 Board PCMCIA
Compact Flash

SA-1111 Board

GFX

flash

SA-1110 Internal Registers
DRAM Bank 0

Cache Clean

Platform Resource Usage

Chapter 5. Installation and Testing

The SA11x0 OS timer is used as a polled timer to provide timeout support for network and XModem file transfers.

Rebuilding RedBoot

These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described @hapter 3

export TARGET=assabet

export ARCH_DIR=arm
export PLATFORM_DIR=sallx0/assabet

The names of configuration files are listed above with the description of the associated modes.

ARM/StrongARM(SA11XO0) Bright Star Engineering commEngine and

nanoEngine

Overview

RedBoot supports a serial port and the built in ethernet port for communication and downloads. The default serial
port settings are 38400,8,N,1. RedBoot runs from and supports flash management for the system flash region.

111

Chapter 5. Installation and Testing

112

The following RedBoot configurations are supported:

Configuration Mode Description File

POST [ROM] RedBoot running from thefredboot_ ROM.ecm
first free flash block at
0x40000.

RAM [RAM] RedBoot running from [redboot RAM.ecm
RAM with RedBoot in the
flash boot sector.

Initial Installation

Unlike other targets, the nanoEngine comes equipped with boot firmware which you cannot modify. See chapter
5, "nanoEngine Firmware" of theanoEngine Hardware Reference Mangak refer to "July 17, 2000 Rev 0.6")
from Bright Star Engineering.

Because of this, eCos, and therefore Redboot, only supports a special configuration of the ROM mode, starting at
offset 0x40000 in the flash.

Briefly, the POST-configuration RedBoot image lives in flash following the BSE firmware. The BSE firmware is
configured, using its standabdotcmd command, to run RedBoot at startup.

Download Instructions

You can perform the initial load of the POST-configuration RedBoot image into flash using the BSE firmware’s
load command. This will load a binary file, using TFTP, and program it into flash in one operation. Because no
memory management is used in the BSE firmware, flash is mapped from address zero upwards, so the address for
the RedBoot POST image is 0x40000. You must use the binary version of RedBoot fesdiis;-post.bin

This assumes you have set up the other BSE firmware config parameters such that it can communicate over your
network to your TFTP server.

>load redboot-post.bin 40000
loading ... erasing blk at 00040000
erasing blk at 00050000

94168 bytes loaded cksum 00008579
done

>

> set bootcmd "go 40000"

> get

myip = 10.16.19.198

netmask = 255.255.255.0

eth = 0

gateway = 10.16.19.66

serverip = 10.16.19.66

bootcmd = go 40000

>

Chapter 5. Installation and Testing

NOTE: the BSE firmware runs its serial 10 at 9600 Baud; RedBoot runs instead at 38400 Baud. You must
select the right baud rate in your terminal program to be able to set up the BSE firmware.

After a reset, the BSE firmware will print

Boot: BSE 2000 Sep 12 2000 14:00:30
autoboot: "go 40000" [hit ESC to abort]

and then RedBoot starts, switching to 38400 Baud.

Once you have installed a bootable RedBoot in the system in this manner, we advise re-installing using the generic
method described i@hapter 4n order that the Flash Image System contains an appropriate description of the flash
entries.

Cohabiting with POST in Flash

The configuration file namededboot POST.ecm configures RedBoot to build for execution at address
0x50040000 (or, during bootup, 0x00040000). This is to allow power-on self-test (POST) code or immutable
firmware to live in the lower addresses of the flash and to run before RedBoot gets control. The assumption is that
RedBoot will be entered at its base address in physical memory, that is 0x00040000.

Alternatively, for testing, you can call it in an already running system by usin@x50040040 at another Red-
Boot prompt, or a branch to that address. The address is where the reset vector points. It is reported by RedBoot’s
load command and listed by tHgs list command, amongst other places.

Using the POST configuration enables a normal config option which causes linking and initialization against mem-
ory layout files called "...post..." rather than "...rom..." or "...ram..." initle&ide/pkgconf directory. Specifi-
cally:

include/pkgconf/mlt_arm_sal1x0_nano_post.h
include/pkgconf/mlt_arm_sal1x0_nano_post.Idi
include/pkgconf/mlt_arm_sal1lx0_nano_post.mlt

It is these you should edit if you wish to move the execution address from 0x50040000 in the POST configuration.
Startup mode naturally remains ROM in this configuration.

Because the nanoEngine contains immutable boot firmware at the start of flash, RedBoot for this target is configured
to reserve that area in the Flash Image System, and to create by default an entry for the POST mode RedBoot.

RedBoot> fis list

Name FLASH addr Mem addr Length Entry point
(reserved) 0x50000000 0x50000000 0x00040000 0x00000000
RedBoot[post] 0x50040000 0x00100000 0x00020000 0x50040040
RedBoot config 0x503E0000 0x503E0000 0x00010000 0x00000000
FIS directory 0x503F0000 0x503F0000 0x00010000 0x00000000
RedBoot>

The entry "(reserved)" ensures that the FIS cannot attempt to overwrite the BSE firmware, thus ensuring that the
board remains bootable and recoverable even after installing a broken RedBoot image.

113

Chapter 5. Installation and Testing

114

Special RedBoot Commands

The nanoEngine/commEngine has one or two Intel i82559 Ethernet controllers installed, but these have no associ-
ated serial EEPROM in which to record their Ethernet Station Address (ESA, or MAC address). The BSE firmware
records an ESA for the device it uses, but this information is not available to RedBoot; we cannot share it.

To keep the ESAs for the two ethernet interfaces, two new items of RedBoot configuration data are introduced.
You can list them with the RedBoot commafudnfig -1 thus:

RedBoot> fconfig -l

Run script at boot: false

Use BOOTP for network configuration: false

Local IP address: 10.16.19.91

Default server IP address: 10.16.19.66

Network hardware address [MAC] for ethO: 0x00:0xB5:0xE0:0xB5:0xE0:0x99
Network hardware address [MAC] for ethl: 0x00:0xB5:0xEQ:0xB5:0xEQ:0x9A
GDB connection port: 9000

Network debug at boot time: false

RedBoot>

You should set them before running RedBoot or eCos applications with the board connected to a network. The
fconfig command can be used as for any configuration data item; the entire ESA is entered in one line.

Memory Maps

The first level page table is located at physical address 0xc0004000. No second level tables are used.

NOTE: The virtual memory maps in this section use a C and B column to indicate whether or not the region is
cached (C) or buffered (B).

Physical Address Range Description

0x00000000 - OxO0O03fffff 4Mb FLASH (nCSO0)

0x18000000 - Ox18ffffff Internal PCIl bus - 2 x i82559 ethernet
0x40000000 - Ox4fffffff External 10 or PCI bus

0x80000000 - Oxbfffffff SA-1110 Internal Registers

0xc0000000 - OxcTffffff DRAM Bank 0 - 32Mb SDRAM
0xc8000000 - Oxcfffffff DRAM Bank 1 - empty

0xe0000000 - OxeTffffff Cache Clean

Virtual Address Range C B Description
0x00000000 - Ox001fffff Y Y DRAM - 8Mb to 32Mb

0x18000000 - Ox180fffff N N Internal PCI bus - 2 x i82559 ethernet
0x40000000 - Ox4fffffff External 10 or PCI bus

0x50000000 - Ox5Affffff Up to 32Mb FLASH (nCS0)
0x80000000 - Oxbfffffff SA-1110 Internal Registers

0xc0000000 - OxcOffffff DRAM Bank 0: 8 or 16Mb

0xc8000000 - Oxcffffff DRAM Bank 1: 8 or 16Mb or absent
0xe0000000 - OxeTffffft Cache Clean

N
Y
N
N
N
Y

<<=<Z<ZzZ

Chapter 5. Installation and Testing

The ethernet devices use a "PCl window" to communicate with the CPU. This is 1Mb of SDRAM which is
shared with the ethernet devices that are on the PCI bus. It is neither cached nor buffered, to ensure that CPU
and PCI accesses see correct data in the correct order. By default it is configured to be megabyte number 30,
at addresses 0x01e00000-0x01efffff. This can be modified, and indeed must be, if less than 32Mb of SDRAM
is installed, via the memory layout tool, or by moving the sectiopci_window referred to by symbol€YG-
MEM_SECTION_pci_window* in the linker script.

Though the nanoEngine ships with 32Mb of SDRAM all attached to DRAM bank 0, the code can cope with any
of these combinations also; "2 x " in this context means one device in each DRAM Bank.

1x8Mb=8Mb 2x8Mb=16Mb
1x16Mb=16Mb 2 x 16Mb =32Mb
All are programmed the same in the memory controller.

Startup code detects which is fitted and programs the memory map accordingly. If the device(s) is 8Mb, then there
are gaps in the physical memory map, because a high order address bit is not connected. The gaps are the higher
2Mb out of every 4Mb.

The SA11x0 OS timer is used as a polled timer to provide timeout support within RedBoot.

Nano Platform Port
The nano is in the set of SA11X0-based platforms. It uses the arm architectural HAL, the sal1x0 variant HAL,
plus the nano platform hal. These are components

CYGPKG_HAL_ARM hal/arm/arch/
CYGPKG_HAL_ARM_SA11X0 hal/arm/sal1x0/var
CYGPKG_HAL_ARM_SA11X0_NANO hal/arm/sal1x0/nano
respectively.

The target name is "nano" which includes all these, plus the ethernet driver packages, flash driver, and so on.

Ethernet Driver
The ethernet driver is in two parts:

A generic ether driver for Intel i8255x series devices, specifically the i8255®vigeth/intel/i82559 . ts
package name BYGPKG_DEVS_ETH_INTEL_I82559

The platform-specific ether driver ievs/eth/arm/nano . Its package iCYGPKG_DEVS_ETH_ARM_NAN®is

tells the generic driver the address in IO memory of the chip, for example, and other configuration details. This
driver picks up the ESA from RedBoot’s configuration data - unless configured to use a static ESA in the usual
manner.

115

Chapter 5. Installation and Testing

Rebuilding RedBoot

These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described @hapter 3

export TARGET=nano
export ARCH_DIR=arm
export PLATFORM_DIR=sal1x0/nano

The names of configuration files are listed above with the description of the associated modes.

ARM/StrongARM(SA11X0) Compaq iPAQ PocketPC

116

Overview

RedBoot supports the serial port via cradle or cable, and Compact Flash ethernet cards if fitted for communication
and downloads. The LCD touchscreen may also be used for the console, although by default RedBoot will switch
exclusively to one channel once input arrives.

The default serial port settings are 38400,8,N,1. RedBoot runs from and supports flash management for the system
flash region.

The following RedBoot configurations are supported:

Configuration Mode Description File

ROM [ROM] RedBoot running from theredboot_ ROM.ecm
board’s flash boot sector.

RAM [RAM] RedBoot running from redboot_RAM.ecm

RAM with RedBoot in the
flash boot sector.
WinCE [RAM] RedBoot running from [redboot_WinCE.ecm
RAM, started from
OSloader.

Initial Installation

RedBoot ROM and WinCE mode images are needed by the installation process.

Installing RedBoot on the iPAQ using Windows/CE

The Windows/CE environment originally shipped with the iPAQ contains a hidden mini-loader, sometimes referred
to as the "Parrot" loader. This loader can be started by holding down the action button (the joypad) while resetting
the unit or when powering on. At this point, a blue bird will appear on the LCD screen. Also at this point, a simple

Chapter 5. Installation and Testing

loader can be accessed over the serial port at 115200/8N1. Using this loader, the contents of the iPAQ flash memory
can be saved to a Compact Flash memory card.

NOTE: We have only tested this operation with a 32Mbyte CF memory card. Given that the backup will take
16MBytes + 1KByte, something more than a 16MByte card will be required.

Use the "r2c" command to dump Flash contents to the CF memory card. Once this completes, RedBoot can be
installed with no fear since the Parrot loader can be used to restore the Flash contents at a later time.

If you expect to completely recover the state of the iPAQ Win/CE environment, then HotSync should be run to
backup all "RAM" files as well before installing RedBoot.

The next step in installing RedBoot on the iPAQ actually involves Windows/CE, which is the native environment
on the unit. Using WIinCE, you need to install an application which will run a RAM based version of RedBoot.
Once this is installed and running, RedBoot can be used to update the flash with a native/ROM version of RedBoot.

« Using ActiveSync, copy the file OSloader to your iPAQ.

« Using ActiveSync, copy the file redboot_WIinCE.bin to the iPAQ as bootldr in its root directory. Note: this is not
the top level folder displayed by Windows (Mobile Device), but rather the "My Pocket PC’ folder within it.

- Execute OSloader. If you didn’t create a shortcut, then you will have to poke around for it using the WinCE file
explorer.

« Choose th@ools->BootLdr->Run after loading from file menu item.

At this point, the RAM based version of RedBoot should be running. You should be able to return to this point by
just executing the last two steps of the previous process if necessary.

Installing RedBoot on the iPAQ - using the Compaq boot loader

This method of installation is no longer supported. If you have previously installed either the Compaq boot loader
or older versions of RedBoot, restore the Win/CE environment and proceed as outlined above.

Setting up and testing RedBoot

When RedBoot first comes up, it will want to initialize its LCD touch screen parameters. It does this by displaying a
keyboard graphic and asks you to press certain keys. Using the stylus, press and hold until the prompt is withdrawn.
When you lift the stylus, RedBoot will continue with the next calibration.

Once the LCD touchscreen has been calibrated, RedBoot will start. The calibration step can be skipped by pressing
thereturn/abort button on the unit (right most button with a curved arrow icon). Additionally, the unit will assume
default values if the screen is not touched within about 15 seconds.

Once RedBoot has started, you should get information similar to this on the LCD screen. It will also appear on the
serial port at 38400,8,N,1.

RedBoot(tm) bootstrap and debug environment [ROM]
Non-certified release, version UNKNOWN - built 06:17:41, Mar 19 2001

117

Chapter 5. Installation and Testing
Platform: Compaq iPAQ Pocket PC (StrongARM 1110)
Copyright (C) 2000, 2001, Red Hat, Inc.

RAM: 0x00000000-0x01fc0000, 0x0001f200-0x01f70000 available
FLASH: 0x50000000 - 0x51000000, 64 blocks of 0x00040000 bytes
each.

Since the LCD touchscreen is only 30 characters wide, some of this data will be off the right hand side of the
display. The joypad may be used to pan left and right in order to see the full lines.

If you have a Compact Flash ethernet card, RedBoot should find it. You'll need to have BOOTP enabled for this
unit (see your sysadmin for details). If it does, it will print a message like:

. Waiting for network card: .Ready!
Socket Communications Inc: CF+ LPE Revision E 08/04/99
IP: 192.168.1.34, Default server: 192.168.1.101

Installing RedBoot permanently

Once you are satisfied with the setup and that RedBoot is operating properly in your environment, you can set up
your iPAQ unit to have RedBoot be the bootstrap application.

CAUTION

This step will destroy your Windows/CE environment.

Before you take this step, it is strongly recommended you save your WinCE FLASH contents
as outlined above using the "parrot" loader, or by using the Compag OSloader:

« Using OSloader on the iPAQ, select the Tools->Flash->Save to files....
menu item.

« Four (4) files, 4MB each in size will be created.

« After each file is created, copy the file to your computer, then delete the
file from the iPAQ to make room in the WinCE ramdisk for the next file.

You will need to download the version of RedBoot designed as the ROM bootstrap. Then install it permanently
using these commands:

RedBoot> lo -r -b 0x100000 redboot_ ROM.bin
RedBoot> fi loc -f 0x50000000 -l 0x40000
RedBoot> fis init

RedBoot> fi unl -f 0x50040000 -l 0x40000
RedBoot> fi cr RedBoot -b 0x100000
RedBoot> fi loc -f 0x50040000 -l 0x40000
RedBoot> reset

118

Chapter 5. Installation and Testing

WARNING

You must type these commands exactly! Failure to do so may render your iPAQ totally use-
less. Once you've done this, RedBoot should come up every time you reset.

Restoring Windows/CE

To restore Windows/CE from the backup takentire Section callednstalling RedBoot permanentlyisit
http://www.handhelds.org/projects/wincerestoration.html for directions.

Additional commands

The execcommand which allows the loading and execution of Linux kernels, is supported for this boatlgsee
Section calledExecuting Programs from RedBdatChapter 2. Theexecparameters used for the iPAQ are:

-b <addr>
Location Linux kernel was loaded to
-l <len>
Length of kernel
-c "params”
Parameters passed to kernel
-r <addr>
'initrd’ ramdisk location
-s<len>

Length of initrd ramdisk

Linux kernels may be run on the iPAQ using the sources from the anonymous CVS repository at the
Handhelds project (http://www.handhelds.org/) with thkénux.patch patch file applied. This file

can be found in themisc/ subdirectory of the iIPAQ platform HAL in the RedBoot sources, normally
hal/arm/sal1x0/ipaq/ VERSIONmisc/

On the iPAQ (and indeed all SA11x0 platforms), Linux expects to be loaded at address 0xC0008000 and the entry
point is also at 0xC0008000.

119

Chapter 5. Installation and Testing

120

Memory Maps

RedBoot sets up the following memory map on the iPAQ: The first level page table is located at physical address
0xC0004000. No second level tables are used.

NOTE: The virtual memory maps in this section use a C and B column to indicate whether or not the region is
cached (C) or buffered (B).

Physical Address Range Description

0x00000000 - OxOXLffffff 16Mb to 32Mb FLASH (nCS0) [organized as below]

0x000000 - Ox0003ffff Parrot Loader
0x040000 - 0x0007ffff RedBoot
0xf80000 - OxO0Ofbffff Fconfig data
0xfc0000 - OxOOffffff FIS directory

0x30000000 - Ox3fffffff Compact Flash

0x48000000 - OxA4bffffff iPAQ internal registers
0x80000000 - Oxbfffffff SA-1110 Internal Registers
0xc0000000 - Oxcaffffff DRAM Bank 0 - 32Mb SDRAM
0xe0000000 - OxeT7ffffff Cache Clean

Virtual Address Range C B Description
0x00000000 - OxO1ffffff
0x30000000 - Ox3fffffff
0x48000000 - Ox4bffffff
0x50000000 - Ox5Affffff
0x80000000 - Oxbfffffff
0xc0000000 - OxcAffffff
0xe0000000 - OxeTffffff

DRAM - 32Mb

Compact Flash

iPAQ internal registers

Up to 32Mb FLASH (nCSO0)
SA-1110 Internal Registers
DRAM Bank 0: 32Mb
Cache Clean

<Z2Z<xzZ<
<<Z<xzZ<

Rebuilding RedBoot

These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described @hapter 3

export TARGET=ipaq

export ARCH_DIR=arm
export PLATFORM_DIR=sal1x0/ipaq

The names of configuration files are listed above with the description of the associated modes.

Chapter 5. Installation and Testing

ARM/StrongARM(SA11XO0) Intrinsyc CerfCube

Overview
RedBoot supports the serial port and the builtin ethernet connection for communication and downloads.

The default serial port settings are 38400,8,N,1. RedBoot runs from and supports flash management for the system
flash region.

The following RedBoot configurations are supported:

Configuration Mode Description File

ROM [ROM] RedBoot running from thefredboot_ ROM.ecm
board’s flash boot sector.

RAM [RAM] RedBoot running from [redboot RAM.ecm
RAM with RedBoot in the
flash boot sector.

Initial Installation

The original boot loader supplied with the CerfCube can be used to install RedBoot. Connect to the device using
a serial port at 38400/8N1. Copy the binary RedBoot ROM mode image to an available TFTP server. Issue these
commands to the Instrinsyc loader:

download tftp: X XXX redboot_ ROM.bin 0xc0000000
flashloader 0x00000000 0xc0000000 0x20000

wherex.x.x.x is the IP address of the TFTP server.

NOTE: Other installation methods may be available via the Intrinsyc loader. Contact Intrinsyc for details.

Additional commands

The execcommand which allows the loading and execution of Linux kernels, is supported for this boatlgsee
Section calledexecuting Programs from RedBdatChapter 2. Theexecparameters used for the CerfCube are:

-b <addr>

Location Linux kernel was loaded to

-l <len>

Length of kernel

121

Chapter 5. Installation and Testing

-c "params”

Parameters passed to kernel
-r <addr>

initrd’ ramdisk location
-s <len>

Length of initrd ramdisk

Memory Maps

RedBoot sets up the following memory map on the CerfCube: The first level page table is located at physical
address 0xC0004000. No second level tables are used.

NOTE: The virtual memory maps in this section use a C and B column to indicate whether or not the region is
cached (C) or buffered (B).

Physical Address Range Description

0x00000000 - OxOxffffff 16Mb to 32Mb FLASH (nCSO0) [organized as below]

0x000000 - 0x0001ffff RedBoot

0x020000 - Ox0003ffff RedBoot [RAM version]
0xfc0000 - Ox0Ofdffff Fconfig data

0xfe0000 - OxOOffffff FIS directory

0x0f000000 - OxOfffffff Onboard ethernet

0x10000000 - Ox17ffffff CerfCube internal registers
0x20000000 - Ox3fffffff PCMCIA / Compact Flash
0x80000000 - Oxbfffffff SA-1110 Internal Registers
0xc0000000 - OxcAffffff DRAM Bank 0 - 32Mb SDRAM
0xe0000000 - OxeTffffff Cache Clean

Virtual Address Range C B Description
0x00000000 - OxO1ffffff
0x08000000 - OxOfffffff
0x10000000 - Ox17ffffff
0x20000000 - Ox3fffffff
0x50000000 - Ox51ffffff
0x80000000 - Oxbfffffff
0xc0000000 - Oxcaffffff
0xe0000000 - OxeT7ffffff

DRAM - 32Mb

Onboard ethernet controller
CerfCube internal registers
PCMCIA / Compact Flash
Up to 32Mb FLASH (nCS0)
SA-1110 Internal Registers
DRAM Bank 0: 32Mb
Cache Clean

<ZZ<xZz2<
<<Z<xZzZ<

122

Chapter 5. Installation and Testing

Rebuilding RedBoot

These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described i@hapter 3

export TARGET=cerf
export ARCH_DIR=arm
export PLATFORM_DIR=sal1x0/cerf

The names of configuration files are listed above with the description of the associated modes.

ARM/Xscale Cyclone 1Q80310

Overview

RedBoot supports both serial ports and the built-in ethernet port for communication and downloads. The default
serial port settings are 115200,8,N,1. RedBoot also supports flash management for the onboard 8MB flash.

The following RedBoot configurations are supported:

Configuration Mode Description File

ROM [ROM] RedBoot running from theredboot ROM.ecm
board’s flash boot sector.

RAM [RAM] RedBoot running from [redboot RAM.ecm

RAM with RedBoot in the
flash boot sector.

ROMA [ROM] RedBoot running from redboot ROMA.ecm
flash address 0x40000,
with ARM bootloader in
flash boot sector.
RAMA [RAM] RedBoot running from redboot_RAMA.ecm
RAM with ARM
bootloader in flash boot
sector.

Initial Installation Method

The board manufacturer provides a DOS application which is capable of programming the flash over the PCI bus,
and this is required for initial installations of RedBoot. Please see the board manual for information on using this
utility. In general, the process involves programming one of the two flash based RedBoot images to flash. The
ROM mode RedBoot (which runs from the flash boot sector) should be programmed to flash address 0x00000000.
The ROMA RedBoot mode (which is started by the ARM bootloader) should be programmed to flash address
0x00004000.

123

Chapter 5. Installation and Testing

124

To install RedBoot to run from the flash boot sector, use the manufacturer’s flash utility to install the ROM mode
image at address zero.

To install RedBoot to run from address 0x40000 with the ARM bootloader in the flash boot sector, use the manu-
facturer’s flash utility to install the ROMA mode image at address 0x40000.

After booting the initial installation of RedBoot, this warning may be printed:

flash configuration checksum error or invalid key

This is normal, and indicates that the flash must be configured for use by RedBoot. Even if the above message is
not printed, it may be a good idea to reinitialize the flash anyway. Do this witfitkemmand:

RedBoot> fis init
About to initialize [format] flash image system - continue (y/n)? y
*** |nitialize flash Image System
Warning: device contents not erased, some blocks may not be usable
. Unlock from 0x007e0000-0x00800000: .
. Erase from 0x007e0000-0x00800000: .
. Program from 0xalfd0000-Oxalfd0400 at 0x007e0000: .
. Lock from 0x007e0000-0x00800000: .
Followed by the fconfig command:
RedBoot> fconfig

Run script at boot: false

Use BOOTP for network configuration: false

Local IP address: 192.168.1.153

Default server IP address: 192.168.1.10

GDB connection port: 1000

Network debug at boot time: false

Update RedBoot non-volatile configuration - continue (y/n)? y

. Unlock from 0x007c0000-0x007e0000: .

. Erase from 0x007c0000-0x007e0000: .

. Program from 0xa0013018-0xa0013418 at 0x007c0000: .
. Lock from 0x007c0000-0x007e0000: .

Note: When later updating RedBoot in situ, it is important to use a matching ROM and RAM mode pair of
images. So use either RAM/ROM or RAMA/ROMA images. Do not mix them.

Error codes

RedBoot uses the two digit LED display to indicate errors during board initialization. Possible error codes are:

88 - Unknown Error
55 - 12C Error

FF - SDRAM Error
01 - No Error

Chapter 5. Installation and Testing

Using RedBoot with ARM Bootloader

RedBoot can coexist with ARM tools in flash on the 1Q80310 board. In this configuration, the ARM bootloader
will occupy the flash boot sector while RedBoot is located at flash address 0x40000. The sixteen position rotary
switch is used to tell the ARM bootloader to jump to the RedBoot image located at address 0x40000. RedBoot is
selected by switch position 0 or 1. Other switch positions are used by the ARM firmware and RedBoot will not be
started.

Special RedBoot Commands

A special RedBoot commandijag, is used to access a set of hardware diagnostics provided by the board manu-
facturer. To access the diagnostic menu, enter diag at the RedBoot prompt:

RedBoot> diag

Entering Hardware Diagnostics - Disabling Data Cache!
1 - Memory Tests

Repeating Memory Tests

- 16C552 DUART Serial Port Tests

- Rotary Switch S1 Test for positions 0-3
seven Segment LED Tests

- Backplane Detection Test

- Battery Status Test

- External Timer Test

9 - i82559 Ethernet Configuration

10 - i82559 Ethernet Test

11 - Secondary PCl Bus Test

12 - Primary PCl Bus Test

13 - i960Rx/303 PCI Interrupt Test

14 - Internal Timer Test

15 - GPIO Test

0 - quit Enter the menu item number (0 to quit):

N
'

0 ~NO O~ W
'

Tests for various hardware subsystems are provided, and some tests require special hardware in order to execute
normally. The Ethernet Configuration item may be used to set the board ethernet address.

1Q80310 Hardware Tests

- Memory Tests

- Repeating Memory Tests

- 16C552 DUART Serial Port Tests
- Rotary Switch S1 Test for positions 0-3
7 Segment LED Tests

- Backplane Detection Test

- Battery Status Test

- External Timer Test

- 182559 Ethernet Configuration

10 - i82559 Ethernet Test

11 - i960Rx/303 PCI Interrupt Test
12 - Internal Timer Test

13 - Secondary PCIl Bus Test

14 - Primary PCl Bus Test

©O© 0O ~NOOOTh~ WNP
'

125

Chapter 5. Installation and Testing

126

15 - Battery Backup SDRAM Memory Test
16 - GPIO Test

17 - Repeat-On-Fail Memory Test

18 - Coyonosa Cache Loop (No return)

19 - Show Software and Hardware Revision
0 - quit

Enter the menu item number (0 to quit):

Tests for various hardware subsystems are provided, and some tests require special hardware in order to execute
normally. The Ethernet Configuration item may be used to set the board ethernet address.

Rebuilding RedBoot

These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described @hapter 3

export TARGET=ig80310
export ARCH_DIR=arm
export PLATFORM_DIR=ig80310

The names of configuration files are listed above with the description of the associated modes.

Interrupts

RedBoot uses an interrupt vector table which is located at address 0OxAO0OOAO04. Entries in this table are pointers
to functions with this protoype::

int irg_handler(unsigned vector, unsigned data)

On an 1Q80310 board, the vector argument is one of 49 interrupts defined in
hal/arm/ig80310/current/include/hal_platform_ints.h: :

/I *=* 80200 CPU ***

#define CYGNUM_HAL_INTERRUPT _reservedO 0

#define CYGNUM_HAL_INTERRUPT_PMU_PMNO_OVFL 1 // See Ch.12 - Performance Mon.
#define CYGNUM_HAL_INTERRUPT_PMU_PMN1_OVFL 2 // PMU counter 0/1 overflow
#define CYGNUM_HAL_INTERRUPT_PMU_CCNT_OVFL 3 // PMU clock overflow

#define CYGNUM_HAL_INTERRUPT_BCU_INTERRUPT 4 // See Ch.11 - Bus Control Unit
#define CYGNUM_HAL_INTERRUPT_NIRQ 5 /I external IRQ

#define CYGNUM_HAL_INTERRUPT_NFIQ 6 /I external FIQ

/I *** XINT6 interrupts ***

#define CYGNUM_HAL_INTERRUPT_DMA_O 7

#define CYGNUM_HAL_INTERRUPT_DMA_1 8

#define CYGNUM_HAL_INTERRUPT_DMA_2 9

#define CYGNUM_HAL_INTERRUPT_GTSC 10 // Global Time Stamp Counter
#define CYGNUM_HAL_INTERRUPT_PEC 11 /I Performance Event Counter
#define CYGNUM_HAL_INTERRUPT_AAIP 12 /I application accelerator unit

Chapter 5. Installation and Testing

/I *** XINT7 interrupts ***

/I 12C interrupts

#define CYGNUM_HAL_INTERRUPT_I2C_TX_EMPTY 13
#define CYGNUM_HAL_INTERRUPT_I2C_RX_FULL 14
#define CYGNUM_HAL_INTERRUPT_I2C_BUS_ERR 15
#define CYGNUM_HAL_INTERRUPT_I2C_STOP 16
#define CYGNUM_HAL_INTERRUPT_I2C_LOSS 17
#define CYGNUM_HAL_INTERRUPT_I2C_ADDRESS 18

/I Messaging Unit interrupts

#define CYGNUM_HAL_INTERRUPT_MESSAGE_0 19
#define CYGNUM_HAL_INTERRUPT_MESSAGE_1 20
#define CYGNUM_HAL_INTERRUPT_DOORBELL 21
#define CYGNUM_HAL_INTERRUPT_NMI_DOORBELL 22
#define CYGNUM_HAL_INTERRUPT_QUEUE_POST 23
#define CYGNUM_HAL_INTERRUPT_OUTBOUND_QUEUE_FULL 24
#define CYGNUM_HAL_INTERRUPT_INDEX_REGISTER 25
/I PCl Address Translation Unit

#define CYGNUM_HAL_INTERRUPT_BIST 26

/I *** External board interrupts (XINT3) ***

#define CYGNUM_HAL_INTERRUPT_TIMER 27 Il external timer
#define CYGNUM_HAL_INTERRUPT_ETHERNET 28 /I onboard enet
#define CYGNUM_HAL_INTERRUPT_SERIAL_A 29 // 16x50 uart A
#define CYGNUM_HAL_INTERRUPT_SERIAL_B 30 // 16x50 uart B

#define CYGNUM_HAL_INTERRUPT_PCI_S INTD 31 // secondary PCl INTD
/I The hardware doesn’t (yet?) provide masking or status for these

/I even though they can trigger cpu interrupts. ISRs will need to

/I poll the device to see if the device actually triggered the

/I interrupt.

#define CYGNUM_HAL_INTERRUPT_PCI_S_INTC 32 // secondary PCIl INTC
#define CYGNUM_HAL_INTERRUPT_PCI_S_INTB 33 // secondary PCI INTB
#define CYGNUM_HAL_INTERRUPT_PCI_S_INTA 34 // secondary PCI INTA

/I *** NMI Interrupts go to FIQ ***

#define CYGNUM_HAL_INTERRUPT_MCU_ERR 35
#define CYGNUM_HAL_INTERRUPT_PATU_ERR 36
#define CYGNUM_HAL_INTERRUPT_SATU_ERR 37
#define CYGNUM_HAL_INTERRUPT_PBDG_ERR 38
#define CYGNUM_HAL_INTERRUPT_SBDG_ERR 39
#define CYGNUM_HAL_INTERRUPT_DMAO_ERR 40
#define CYGNUM_HAL_INTERRUPT_DMA1_ERR 41
#define CYGNUM_HAL_INTERRUPT_DMA2_ERR 42
#define CYGNUM_HAL_INTERRUPT_MU_ERR 43
#define CYGNUM_HAL_INTERRUPT_reserved52 44

#define CYGNUM_HAL_INTERRUPT_AAU_ERR 45
#define CYGNUM_HAL_INTERRUPT_BIU_ERR 46

/I *** ATU FIQ sources ***

127

Chapter 5. Installation and Testing

128

#define CYGNUM_HAL_INTERRUPT_P_SERR 47
#define CYGNUM_HAL_INTERRUPT_S_SERR 48
The data passed to the ISR is pulled from a data tédaleinterrupt_data) which immediately follows the

interrupt vector table. With 49 interrupts, the data table starts at address OxAO00AOCS.

An application may create a normal C function with the above prototype to be an ISR. Just poke its address into the
table at the correct index and enable the interrupt at its source. The return value of the ISR is ignored by RedBoot.

Memory Maps

The first level page table is located at 0xa0004000. Two second level tables are also used. One second level table is
located at 0xa0008000 and maps the first 1MB of flash. The other second level table is at 0xa0008400, and maps
the first LIMB of SDRAM.

NOTE: The virtual memory maps in this section use a C and B column to indicate whether or not the region is
cached (C) or buffered (B).

Physical Address Range Description

0x00000000 - 0x00000fff flash Memory

0x00001000 - 0x00001fff 80312 Internal Registers
0x00002000 - 0x00Tfffff flash Memory

0x00800000 - OxTfffffff PCI ATU Outbound Direct Window
0x80000000 - Ox83Hffffff Primary PCI 32-bit Memory
0x84000000 - Ox8Tffffff Primary PCIl 64-bit Memory
0x88000000 - Ox8bffffff Secondary PCIl 32-bit Memory
0x8c000000 - Ox8fffffff Secondary PCl 64-bit Memory
0x90000000 - 0x9000ffff Primary PCI 10 Space
0x90010000 - 0x9001ffff Secondary PCI 10 Space
0x90020000 - OxOfffffff Unused

0xa0000000 - Oxbfffffff SDRAM

0xc0000000 - Oxefffffff Unused

0xf0000000 - Oxffffffff 80200 Internal Registers

Virtual Address Range C B Description
0x00000000 - 0x00000fff Y Y SDRAM

0x00001000 - 0x00001fff N N 80312 Internal Registers
0x00002000 - Oxo07fffff Y N flash Memory

0x00800000 - Ox7fffffff N N PCI ATU Outbound Direct Window
0x80000000 - Ox83ffffff N N Primary PCl 32-bit Memory
0x84000000 - Ox87ffffff N N Primary PCl 64-bit Memory
0x88000000 - Ox8bffffff N N Secondary PCl 32-bit Memory
0x8c000000 - Ox8fffffff N N Secondary PCI 64-bit Memory
0x90000000 - 0x9000ffff N N Primary PCl 10 Space
0x90010000 - 0x9001ffff N N Secondary PCI 10 Space
0xa0000000 - Oxbfffffff Y Y SDRAM

Chapter 5. Installation and Testing

0xc0000000 - Oxcfffffff Y Y Cache Flush Region
0xd0000000 - 0xd000offf Y N first 4k page of flash
0xf0000000 - Oxffffffff N N 80200 Internal Registers

Platform Resource Usage

The external timer is used as a polled timer to provide timeout support for networking and XModem file transfers.

ARM/Xscale Intel IQ80321

Overview

RedBoot supports the serial port and the built-in ethernet port for communication and downloads. The default serial
port settings are 115200,8,N,1. RedBoot also supports flash management for the onboard 8MB flash.

The following RedBoot configurations are supported:

Configuration Mode Description File

ROM [ROM] RedBoot running from theredboot_ ROM.ecm
board’s flash boot sector.

RAM [RAM] RedBoot running from redboot_RAM.ecm
RAM with RedBoot in the
flash boot sector.

Initial Installation Method

The board manufacturer provides a DOS application which is capable of programming the flash over the PCI bus,
and this is required for initial installations of RedBoot. Please see the board manual for information on using this
utility. In general, the process involves programming the ROM mode RedBoot image to flash. RedBoot should be
programmed to flash address 0x00000000 using the DOS utility.

After booting the initial installation of RedBoot, this warning may be printed:
flash configuration checksum error or invalid key

This is normal, and indicates that the flash must be configured for use by RedBoot. Even if the above message is
not printed, it may be a good idea to reinitialize the flash anyway. Do this witfislesemmand:

RedBoot> fis init
About to initialize [format] FLASH image system - continue (y/n)? y
*** |nitialize FLASH Image System

Warning: device contents not erased, some blocks may not be usable

. Unlock from 0xf07e0000-0xf0800000: .

129

Chapter 5. Installation and Testing

130

. Erase from 0xf07e0000-0xf0800000: .
. Program from 0x01ddf000-0x01ddf400 at Oxf07e0000: .
. Lock from 0xf07e0000-0xf0800000: .

Switch Settings

The 80321 board is highly configurable through a number of switches and jumpers. RedBoot makes some assump-
tions about board configuration and attention must be paid to these assumptions for reliable RedBoot operation:

- The onboard ethernet and the secondary slot may be placed in a private space so that they are not seen by a PC
BIOS. If the board is to be used in a PC with BIOS, then the ethernet should be placed in this private space so
that RedBoot and the BIOS do not conflict.

- RedBoot assumes that the board is plugged into a PC with BIOS. This requires RedBoot to detect when the
BIOS has configured the PCI-X secondary bus. If the board is placed in a backplane, RedBoot will never see
the BIOS configure the secondary bus. To prevent this wait, set switch S7TE1-3 to ON when using the board in a
backplane.

- For the remaining switch settings, the following is a known good configuration:

S1D1 All OFF
S7E1 7 is ON, all others OFF
S8E1 2,3,5,6 are ON, all others OFF
S8E2 2,3 are ON, all others OFF
SOE1 3 is ON, all others OFF
S4D1 1,3 are ON, all others OFF
JOE1 2,3 jumpered
JOF1 2,3 jumpered
J3F1 Nothing jumpered
J3G1 2,3 jumpered
J1G2 2,3 jumpered

LED Codes

RedBoot uses the two digit LED display to indicate status during board initialization. Possible codes are:

LED Actions

Power-On/Reset
88
Set the CPSR

Al

A2

A3

A4

90

91

92

93

94

A5

A6

SL

SE
A7

A8

A9

AA

Enable coprocessor access
Drain write and fill buffer
Setup PBIU chip selects

Enable the Icache

Move FLASH chip select from 0x0 to 0xFO000000

Jump to new FLASH location

Setup and enable the MMU

12C interface initialization

Wait for 12C initialization to complete
Send address (via 12C) to the DIMM
Wait for transmit complete

Read SDRAM PD data from DIMM
Read remainder of EEPROM data.
An error will result in one of the following
error codes on the LEDs:

77 BAD EEPROM checksum

55 12C protocol error

FF bank size error

Setup DDR memory interface
Enable branch target buffer

Drain the write & fill buffers

Flush Icache, Dcache and BTB
Flush instuction and data TLBs

Drain the write & fill buffers

ECC Scrub Loop

Clean, drain, flush the main Dcache
Clean, drain, flush the mini Dcache
Flush Dcache

Drain the write & fill buffers

Enable ECC

Save SDRAM size

Chapter 5. Installation and Testing

131

Chapter 5. Installation and Testing

Move MMU tables into RAM

AB
Clean, drain, flush the main Dcache
Clean, drain, flush the mini Dcache
Drain the write & fill buffers

AC

Set the TTB register to DRAM mmu_table
AD

Set mode to IRQ mode
A7

Move SWI & Undefined "vectors" to RAM (at 0x0)
A6

Switch to supervisor mode
A5

Move remaining "vectors” to RAM (at 0x0)
A4

Copy DATA to RAM

Initialize interrupt exception environment

Initialize stack

Clear BSS section
A3

Call platform specific hardware initialization
A2

Run through static constructors
Al

Start up the eCos kernel or RedBoot

Special RedBoot Commands

A special RedBoot commandiag, is used to access a set of hardware diagnostics. To access the diagnostic menu,
enterdiag at the RedBoot prompt:

RedBoot> diag
Entering Hardware Diagnostics - Disabling Data Cache!

1Q80321 Hardware Tests

- Memory Tests

- Repeating Memory Tests

- Repeat-On-Fail Memory Tests
- Rotary Switch S1 Test

7 Segment LED Tests

- 182544 Ethernet Configuration
- Baterry Status Test

- Battery Backup SDRAM Memory Test
- Timer Test

PCl Bus test

CPU Cache Loop (No Return)
- quit

© O ~NO O~ WNEPRF
'

e
or O
_

132

Chapter 5. Installation and Testing

Enter the menu item number (0 to quit):

Tests for various hardware subsystems are provided, and some tests require special hardware in order to execute
normally. The Ethernet Configuration item may be used to set the board ethernet address.

Memory Tests

This test is used to test installed DDR SDRAM memory. Five different tests are run over the given address ranges.
If errors are encountered, the test is aborted and information about the failure is printed. When selected, the user
will be prompted to enter the base address of the test range and its size. The numbers must be in hex with no leading
“OX”

Enter the menu item number (0 to quit): 1
Base address of memory to test (in hex): 100000
Size of memory to test (in hex): 200000

Testing memory from 0x00100000 to OxOO2fffff.

Walking 1's test:
0000000100000002000000040000000800000010000000200000004000000080
0000010000000200000004000000080000001000000020000000400000008000
0001000000020000000400000008000000100000002000000040000000800000
0100000002000000040000000800000010000000200000004000000080000000
passed

32-bit address test: passed

32-bit address bar test: passed

8-bit address test: passed

Byte address bar test: passed

Memory test done.

Repeating Memory Tests

The repeating memory tests are exactly the same as the above memory tests, except that the tests are automatically
rerun after completion. The only way out of this test is to reset the board.

Repeat-On-Fail Memory Tests

This is similar to the repeating memory tests except that when an error is found, the failing test continuously retries
on the failing address.

Rotary Switch S1 Test

This tests the operation of the sixteen position rotary switch. When run, this test will display the current position
of the rotary switch on the LED display. Slowly dial through each position and confirm reading on LED.

133

Chapter 5. Installation and Testing

134

7 Segment LED Tests

This tests the operation of the seven segment displays. When run, each LED cycles through 0 through F and a
decimal point.

182544 Ethernet Configuration

This test initializes the ethernet controller’s serial EEPROM if the current contents are invalid. In any case, this test
will also allow the user to enter a six byte ethernet MAC address into the serial EEPROM.

Enter the menu item number (0 to quit): 6

Current MAC address: 00:80:4d:46:00:02
Enter desired MAC address: 00:80:4d:46:00:01
Writing to the Serial EEPROM... Done

rrxxxxrx Reset The Board To Have Changes Take Effect *xxxxxxx

Battery Status Test

This tests the current status of the battery. First, the test checks to see if the battery is installed and reports that
finding. If the battery is installed, the test further determines whether the battery status is one or more of the
following:

- Battery is charging.
- Battery is fully discharged.

- Battery voltage measures within normal operating range.

Battery Backup SDRAM Memory Test
This tests the battery backup of SDRAM memory. This test is a three step process:

1. Select Battery backup test from main diag menu, then write data to SDRAM.
2. Turn off power for 60 seconds, then repower the board.

3. Select Battery backup test from main diag menu, then check data that was written in step 1.

Timer Test

This tests the internal timer by printing a number of dots at one second intervals.

Chapter 5. Installation and Testing

PCI Bus Test

This tests the secondary PCI-X bus and socket. This test requires that an 1Q80310 board be plugged into the
secondary slot of the IOP80321 board. The test assumes at least 32MB of installed memory on the 1Q80310. That
memory is mapped into the IOP80321 address space and the memory tests are run on that memory.

CPU Cache Loop

This test puts the CPU into a tight loop run entirely from the ICache. This should prevent all external bus accesses.

Rebuilding RedBoot

These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described i@hapter 3

export TARGET=iq80321
export ARCH_DIR=arm
export PLATFORM_DIR=xscale/ig80321

The names of configuration files are listed above with the description of the associated modes.

Interrupts

RedBoot uses an interrupt vector table which is located at address 0x8004. Entries in this table are pointers to
functions with this protoype::

int irqg_handler(unsigned vector, unsigned data)

On an 1Q80321 board, the vector argument is one of 32 interrupts defined in
hal/arm/xscale/verde/current/include/hal_var_ints.h: :

/I ** 80200 CPU **

#define CYGNUM_HAL_INTERRUPT_DMAO_EOT
#define CYGNUM_HAL_INTERRUPT_DMAO_EOC
#define CYGNUM_HAL_INTERRUPT_DMA1_EOT
#define CYGNUM_HAL_INTERRUPT_DMA1_EOC
#define CYGNUM_HAL_INTERRUPT _RSVD_4
#define CYGNUM_HAL_INTERRUPT_RSVD_5
#define CYGNUM_HAL_INTERRUPT_AA_EOT
#define CYGNUM_HAL_INTERRUPT_AA_EOC
#define CYGNUM_HAL_INTERRUPT_CORE_PMON 8
#define CYGNUM_HAL_INTERRUPT_TIMERO 9
#define CYGNUM_HAL_INTERRUPT_TIMER1 10
#define CYGNUM_HAL_INTERRUPT_[2C_0 11
#define CYGNUM_HAL_INTERRUPT_[2C_1 12
#define CYGNUM_HAL_INTERRUPT_MESSAGING 13
#define CYGNUM_HAL_INTERRUPT_ATU_BIST 14
#define CYGNUM_HAL_INTERRUPT_PERFMON 15
#define CYGNUM_HAL_INTERRUPT_CORE_PMU 16

\lmmmeHO

135

Chapter 5. Installation and Testing

#define CYGNUM_HAL_INTERRUPT BIU_ERR 17
#define CYGNUM_HAL_INTERRUPT_ATU_ERR 18
#define CYGNUM_HAL_INTERRUPT_MCU_ERR 19
#define CYGNUM_HAL_INTERRUPT_DMAO_ERR 20
#define CYGNUM_HAL_INTERRUPT_DMA1_ERR 22
#define CYGNUM_HAL_INTERRUPT_AA_ERR 23
#define CYGNUM_HAL_INTERRUPT_MSG_ERR 24
#define CYGNUM_HAL_INTERRUPT_SSP 25
#define CYGNUM_HAL_INTERRUPT_RSVD_26 26
#define CYGNUM_HAL_INTERRUPT_XINTO 27
#define CYGNUM_HAL_INTERRUPT_XINT1 28
#define CYGNUM_HAL_INTERRUPT_XINT2 29
#define CYGNUM_HAL_INTERRUPT_XINT3 30
#define CYGNUM_HAL_INTERRUPT_HPI 31

The data passed to the ISR is pulled from a data t@faleinterrupt_data)
interrupt vector table. With 32 interrupts, the data table starts at address 0x8084.

which immediately follows the

An application may create a normal C function with the above prototype to be an ISR. Just poke its address into the
table at the correct index and enable the interrupt at its source. The return value of the ISR is ignored by RedBoot.

Memory Maps

The RAM based page table is located at RAM start + 0x4000. RedBoot may be configured for one of two memory
maps. The difference between them is the location of RAM and the PCI outbound windows. The alternative mem-
ory map may be used when building RedBoot or eCos by usingive ALTMARNAROM_ALTMABtartup types in

the configuration.

NOTE: The virtual memory maps in this section use a C, B, and X column to indicate the caching policy for the

region..

X C B Description

0 0 0 Uncached/Unbuffered

0 0 1 Uncached/Buffered

0 1 0 Cached/Buffered Write Through, Read Allocate
0 1 1 Cached/Buffered Write Back, Read Allocate

1 0 0 |Invalid -- not used

1 0 1 Uncached/Buffered No write buffer coalescing
110 Mini DCache - Policy set by Aux Ctl Register

11 1 Cached/Buffered Write Back, Read/Write Allocate
Physical Address Range Description

0x00000000 - OxT7fffffff ATU Outbound Direct Window
0x80000000 - O0Ox900fffff ATU Outbound Translate Windows
0xa0000000 - Oxbfffffff SDRAM

0xf0000000 - 0xf0800000 FLASH (PBIU CSO0)
0xfe800000 - Oxfe800fff UART (PBIU CS1)

Chapter 5. Installation and Testing

0xfe840000 - Oxfe840fff Left 7-segment LED (PBIU CS3)
0xfe850000 - Oxfe850fff Right 7-segment LED (PBIU CS2)
0xfe8d0000 - Oxfe8dOfff Rotary Switch (PBIU CS4)
0xfe8f0000 - Oxfe8fOfff Baterry Status (PBIU CS5)
0xfff00000 - Oxffffffff Verde Memory mapped Registers

Default Virtual Map X C B Description
0x00000000 - Oxifffffff 1 1 1 SDRAM

0x20000000 - Oxofffffff 0 O O ATU Outbound Direct Window
0xa0000000 - OxbOOfffff 0 0 O ATU Outbound Translate Windows
0xc0000000 - Oxdfffffff O O O Uncached alias for SDRAM
0xe0000000 - OxeOOfffff 1 1 1 Cache flush region (no phys mem)
0xf0O000000 - 0xf0800000 O 1 O FLASH (PBIU CS0)
0xfe800000 - Oxfe800fff O O O UART (PBIU CS1)
0xfe840000 - Oxfe840fff O O O Left 7-segment LED (PBIU CS3)
0xfe850000 - Oxfe850fff 0O O O Right 7-segment LED (PBIU CS2)
0xfe8d0000 - Oxfe8dOfff O O O Rotary Switch (PBIU CS4)
0xfe8f0000 - Oxfe8f0fff O O O Baterry Status (PBIU CS5b)
Oxfff00000 - Oxffffffff O O O Verde Memory mapped Registers

Alternate Virtual Map X C B Description

0x00000000 - Ox000fffff 1 1 1 Alias for 1st MB of SDRAM
0x00100000 - Ox7fffffff 0 O O ATU Outbound Direct Window
0x80000000 - Ox900fffff 0 0 0 ATU Outbound Translate Windows
0xa0000000 - Oxbfffffff 1 1 1 SDRAM

0xc0000000 - Oxdfffffff O O O Uncached alias for SDRAM
0xe0000000 - OxeOOfffff 1 1 1 Cache flush region (no phys mem)

0xf0000000 - 0xf0800000 0 1 O FLASH (PBIU CSO0)
0xfe800000 - Oxfe800fff O 0 O UART (PBIU CS1)
0xfe840000 - Oxfe840fff O O O Left 7-segment LED (PBIU CS3)
0xfe850000 - Oxfe850fff O O O Right 7-segment LED (PBIU CS2)
0xfe8d0000 - Oxfe8dOfff O O O Rotary Switch (PBIU CS4)
0xfe8f0000 - Oxfe8f0fff O O O Baterry Status (PBIU CS5)

Oxfff00000 - Oxffffffff O O O Verde Memory mapped Registers

Platform Resource Usage

The Verde programmable timer0 is used for timeout support for networking and XModem file transfers.

CalmRISC/CalmRISC16 Samsung CalmRISC16 Core Evaluation Board

Overview

The Samsung CalmRISC16 evaluation platform consists of two boards connected by a ribbon cable. One board
contains the CPU core and memory. The other board is called the MDSChip board and provides the host interface.

137

Chapter 5. Installation and Testing

138

The calmRISC16 is a harvard architecture with separate 22-bit program and data addresses. The instruction set
provides no instruction for writing to program memory. The MDSChip board firmware (called CalmBreaker) pro-
vides a pseudo register interface so that code running on the core has access to a serial channel and a mechanism to
write to program memory. The serial channel is fixed at 57600-8-N-1 by the firmware. The CalmBreaker firmware
also provides a serial protocol which allows a host to download a program and to start or stop the core board.

The following RedBoot configurations are supported:

Configuration Mode Description File

ROM [ROM] RedBoot running via the redboot ROM.ecm
MDSChip board.

Initial Installation Method

The CalmRISC16 core is controlled through the MDSChip board. There is no non-volatile storage available for
RedBoot, so RedBoot must be downloaded to the board on every power cycle. A small utility program is used to
download S-record files to the eval board. Sources and build instructions for this utility are located in the RedBoot
sources inpackages/hal/calmrisc16/ceb/current/support

To download the RedBoot image, first press the reset button on the MDSChip board. The green 'Run’ LED on the
core board should go off. Now, use the utility to download the RedBoot image with:

$ calmbreaker -p /dev/term/b --reset --srec-code -f redboot.elf

Note that the '-p /dev/term/b’ specifies the serial port to use and will vary from system to system. The download
will take about two minutes. After it finishes, start RedBoot with:

$ calmbreaker -p /dev/term/b --run

The 'Run’ LED on the core board should be on. Connecting to the MDSboard with a terminal and typing enter
should result in RedBoot reprinting the command prompt.

Special RedBoot Commands

None.

Special Note on Serial Channel

The MDSChip board uses a relatively slow microcontroller to provide the pseudo-register interface to the core
board. This pseudo-register interface provides access to the serial channel and write access to program memory.
Those interfaces are slow and the serial channel is easily overrun by a fast host. For this reason, GDB must be told
to limit the size of code download packets to avoid serial overrun. This is done with the following GDB command:

(gdb) set download-write-size 25

Chapter 5. Installation and Testing

Rebuilding RedBoot

These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described i@hapter 3

export TARGET=calm16_ceb
export ARCH_DIR=calmrisc16
export PLATFORM_DIR=ceb

The names of configuration files are listed above with the description of the associated modes.

CalmRISC/CalmRISC32 Samsung CalmRISC32 Core Evaluation Board

Overview

The Samsung CalmRISC32 evaluation platform consists of two boards connected by a ribbon cable. One board
contains the CPU core and memory. The other board is called the MDSChip board and provides the host interface.
The calmRISC32 is a harvard architecture with separate 32-bit program and data addresses. The instruction set
provides no instruction for writing to program memory. The MDSChip board firmware (called CalmBreaker) pro-
vides a pseudo register interface so that code running on the core has access to a serial channel and a mechanism to
write to program memory. The serial channel is fixed at 57600-8-N-1 by the firmware. The CalmBreaker firmware
also provides a serial protocol which allows a host to download a program and to start or stop the core board.

The following RedBoot configurations are supported:

Configuration Mode Description File

ROM [ROM] RedBoot running via the redboot ROM.ecm
MDSChip board.

Initial Installation Method

The calmRISC32 core is controlled through the MDSChip board. There is no non-volatile storage available for
RedBoot, so RedBoot must be downloaded to the board on every power cycle. A small utility program is used to
download S-record files to the eval board. Sources and build instructions for this utility are located in the RedBoot
sources inpackages/hal/calmrisc32/ceb/current/support

To download the RedBoot image, first press the reset button on the MDSChip board. The green 'Run’ LED on the
core board should go off. Now, use the utility to download the RedBoot image with:

$ calmbreaker -p /dev/term/b --reset --srec-code -f redboot.elf

Note that the '-p /dev/term/b’ specifies the serial port to use and will vary from system to syetm. The download
will take about two minutes. After it finishes, start RedBoot with:

$ calmbreaker -p /dev/term/b --run

139

Chapter 5. Installation and Testing

The 'Run’ LED on the core board should be on. Connecting to the MDSboard with a terminal and typing enter
should result in RedBoot reprinting the command prompt.

Special RedBoot Commands

None.

Special Note on Serial Channel

The MDSChip board uses a relatively slow microcontroller to provide the pseudo-register interface to the core
board. This pseudo-register interface provides access to the serial channel and write access to program memory.
Those interfaces are slow and the serial channel is easily overrun by a fast host. For this reason, GDB must be told
to limit the size of code download packets to avoid serial overrun. This is done with the following GDB command:

(gdb) set download-write-size 25

Rebuilding RedBoot

These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described i@hapter 3

export TARGET=calm32_ceb
export ARCH_DIR=calmrisc32
export PLATFORM_DIR=ceb

The names of configuration files are listed above with the description of the associated modes.

FRV/FRV400 Fujitsu FR-V 400 (MB-93091)

140

Overview

RedBoot supports both serial ports, which are available via the stacked serial connectors on the mother board. The
topmost port is the default and is considered to be port 0 by RedBoot. The bottommost port is serial port 1. The
default serial port settings are 38400,8,N,1.

FLASH management is also supported, but only for the FLASH device in IC7. This arrangement allows for IC8 to
retain either the original Fujitsu board firmware, or some application specific contents.

The following RedBoot configurations are supported:

Configuration Mode Description File

Chapter 5. Installation and Testing

Configuration Mode Description File

ROMRAM [ROMRAM] RedBoot running from redboot ROMRAM.ecm
RAM, but contained in the
board’s flash boot sector.
RAM [RAM] RedBoot running from redboot_RAM.ecm
RAM with RedBoot in the
flash boot sector.

Initial Installation Method

RedBoot can be installed by directly programming the FLASH device in IC7 or by using the Fujitsu provided
software to download and install a version into the FLASH device. Complete instructions are provided separately.

Special RedBoot Commands

None.

Memory Maps

The memory map of this platform is fixed by the hardware (cannot be changed by software). The only attributes
which can be modified are control over cacheability, as noted below.

Address Cache? Resource
00000000-03EFFFFF Yes SDRAM (via plugin DIMM)
03F00000-03FFFFFF No SDRAM (used for PCI window)
10000000-1FFFFFFF No MB86943 PCI bridge
20000000-201FFFFF No SRAM
21000000-23FFFFFF No Motherboard resources
24000000-25FFFFFF No PCI 1/0 space
26000000-2FFFFFFF No PCI Memory space
30000000-FDFFFFFF ?? Unused
FEOO0000-FEFFFFFF No /0 devices
FF000000-FF1FFFFF No IC7 - RedBoot FLASH
FF200000-FF3FFFFF No IC8 - unused FLASH
FF400000-FFFFFFFF No Misc other 1/O

NOTE: The only configuration currently suppored requires a 64MB SDRAM DIMM to be present on the CPU
card. No other memory configuration is supported at this time.

141

Chapter 5. Installation and Testing

Rebuilding RedBoot

These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described @hapter 3

export TARGET=frv400
export ARCH_DIR=frv
export PLATFORM_DIR=frv400

The names of configuration files are listed above with the description of the associated modes.

|IA32/x86 x86-Based PC

142

Overview

RedBoot supports two serial ports and an Intel i82559 based ethernet card (for example an Intel EtherExpress Pro
10/100) for communication and downloads. The default serial port settings are 38400,8,N,1.

The following RedBoot configurations are supported:

Configuration Mode Description File

Floppy [Floppy] RedBoot running from a |redboot. ROM.ecm
boot floppy disk installed
in the A: drive of the PC.

Initial Installation

RedBoot takes the form of a self-booting image that must be written onto a formatted floppy disk. The process will
erase any file system or data that already exists on that disk, so proceed with caution.

For Red Hat Linux users, this can be done by:
$ dd conv=sync if=install/bin/redboot.bin of=/dev/f{dOH1440

For NT Cygwin users, this can be done by first ensuring that the raw floppy device is mourited/fds
To check if this is the case, type the commandunt at the Cygwin bash prompt. If the floppy drive is already
mounted, it will be listed as something similar to the following line:

\\\a: /dev/fd0 user binmode
If this line is not listed, then mount the floppy drive using the command:
$ mount -f -b //./a: /dev/fdO

To actually install the boot image on the floppy, use the command:

Chapter 5. Installation and Testing

$ dd conv=sync if=install/bin/redboot.bin of=/dev/fd0

Insert this floppy in the A: drive of the PC to be used as a target and ensure that the BIOS is configured to boot
from A: by default. On reset, the PC will boot from the floppy and be ready to be debugged via either serial line,
or via the ethernet interface if it is installed.

NOTE: Unreliable floppy media may cause the write to silently fail. This can be determined if the RedBoot
image does not correctly boot. In such cases, the floppy should be (unconditionally) reformatted using the
fdformat command on Linux, or format a: /Ju on DOS/Windows.

Flash management
PC RedBoot does not support any FLASH commands.

Special RedBoot Commands

None.

Memory Maps

All selectors are initialized to map the entire 32-bit address space in the familiar protected mode flat model. Page
translation is not used. RAM up to 640K is mapped to 0x0 to 0xa0000. RAM above 640K is mapped from address
0x100000 upwards. Space is reserved between 0xa0000 and 0x100000 for option ROMs and the BIOS.

Rebuilding RedBoot

These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described @hapter 3

export TARGET=pc
export ARCH_DIR=i386
export PLATFORM_DIR=pc

The names of configuration files are listed above with the description of the associated modes.

MIPS/MIPS32(CoreLV 4Kc)+MIPS64(CorelLV 5Kc) Atlas Board

Overview

RedBoot supports the DgbSer serial port and the built in ethernet port for communication and downloads. The
default serial port settings are 115200,8,N,1. RedBoot runs from and supports flash management for the system

143

Chapter 5. Installation and Testing

flash region.

The following RedBoot configurations are supported:

Configuration Mode Description File

ROM [ROM] RedBoot running from thefredboot ROM.ecm
board’s flash boot sector.

RAM [RAM] RedBoot running from redboot RAM.ecm
RAM with RedBoot in the
flash boot sector.

Initial Installation

RedBoot is installed using the code download facility built into the Atlas board. See the Atlas User manual for
details, and also the Atlas download formattie Section calledtlas download format

Quick download instructions

Here are quick start instructions for downloading the prebuilt RedBoot image.

1. Locate the prebuilt files in the bin directoryeleteall.dl andredboot.dl

2. Make sure switch S1-1 is OFF and switch S5-1 is ON. Reset the board and verify that the LED display reads
Flash DL .

3. Make sure your parallel port is connected to the 1284 port Of the Atlas board.

4. Send thadeleteall.dl file to the parallel port to erase previous images:
$ cat deleteall.dl >/dev/Ip0
When this is complete, the LED display should r&stkted .

5. Send the ROM mode RedBoot image to the board:
$ cat redboot.dl >/dev/Ip0

When this is complete, the LED display should show the last address programmed. This will be something
like: 1fc17000 .

6. Change switch S5-1 to OFF and reset the board. The LED display shoulg¢eaabt .

7. Run the RedBodis init andfconfig commands to initialize the flash. St Section calleédditional config
options the Section calledrlash Image System (FI®) Chapter 2andthe Section calledPersistent State
Flash-based Configuration and Contiiol Chapter Zor details.

Atlas download format

In order to download RedBoot to the Atlas board, it must be converted to the Atlas download format. There are
different ways of doing this depending on which version of the developer’s kit is shipped with the board.

144

Chapter 5. Installation and Testing

The Atlas Developer's KitCD contains an srec2flash utility. The source code for this utility is part of
the yamon/yamon-src-01.01.tar.gz tarball on the Dev Kit CD. The path in the expanded tarball is
yamon/bin/tools . To use srec2flash to convert the S-record file:

$ srec2flash -EL -S29 redboot.srec >redboot.dl

The Atlas/Malta Developer’s KilCD contains an srecconv.pl utility which requires Perl. This utilty is part of
the yamon/yamon-src-02.00.tar.gz tarball on the Dev Kit CD. The path in the expanded tarbalyds
mon/bin/tools . To use srecconv to convert the S-record file:

$ cp redboot_ROM.srec redboot_ROM.rec
$ srecconv.pl -ES L -A 29 redboot_ROM

The resulting file is name@dboot ROM.fI

Flash management

Additional config options

The ethernet MAC address is stored in flash manually usinfgtirdig command. You can use the YAMOdétenv
ethaddr command to print out the board ethernet address. Typically, it is:

00:0d:a0:00: xx:xx

wherexx.xx is the hex representation of the board serial number.

Additional commands

Theexeccommand which allows the loading and execution of Linux kernels, is supported for this architecture (see
the Section calledExecuting Programs from RedBoiot Chapter 2. The execparameters used for MIPS boards

are:
-b <addr>

Location to store command line and environment passed to kernel
-w <time>

Wait time in seconds before starting kernel
-c "params”

Parameters passed to kernel
<addr>

Kernel entry point, defaulting to the entry point of the last image loaded

Linux kernels on MIPS platforms expect the entry point to be called with arguments in the registers equivalent to
a C call with prototype:

145

Chapter 5. Installation and Testing

void Linux(int argc, char **argv, char **envp);

RedBoot will place the appropriate data at the offset specified bykth@arameter, or by default at address
0x80080000, and will set the arguments accordingly when calling into the kernel.

The default entry point, if no image with explicit entry point has been loaded and none is specified, is 0x80000750.

Interrupts

RedBoot uses an interrupt vector table which is located at address 0x80000400. Entries in this table are pointers to
functions with this protoype:

int irq_handler(unsigned vector, unsigned data)

On an atlas board, the vector argument is one of 25 interrupts defined in
hal/mips/atlas/ VERSIONinclude/plf_intr.h

#define CYGNUM_HAL_INTERRUPT_SER 0
#define CYGNUM_HAL_INTERRUPT_TIMO 1
#define CYGNUM_HAL_INTERRUPT 2 2
#define CYGNUM_HAL_INTERRUPT 3 3
#define CYGNUM_HAL_INTERRUPT_RTC 4
#define CYGNUM_HAL_INTERRUPT_COREHI 5
#define CYGNUM_HAL_INTERRUPT_CORELO 6

#define CYGNUM_HAL_INTERRUPT_7 7
#define CYGNUM_HAL_INTERRUPT_PCIA 8
#define CYGNUM_HAL_INTERRUPT_PCIB 9
#define CYGNUM_HAL_INTERRUPT_PCIC 10
#define CYGNUM_HAL_INTERRUPT_PCID 11
#define CYGNUM_HAL_INTERRUPT_ENUM 12
#define CYGNUM_HAL_INTERRUPT_DEG 13
#define CYGNUM_HAL_INTERRUPT_ATXFAIL 14
#define CYGNUM_HAL_INTERRUPT_INTA 15
#define CYGNUM_HAL_INTERRUPT_INTB 16
#define CYGNUM_HAL_INTERRUPT_INTC 17
#define CYGNUM_HAL_INTERRUPT_INTD 18
#define CYGNUM_HAL_INTERRUPT_SERR 19
#define CYGNUM_HAL_INTERRUPT_HW1 20
#define CYGNUM_HAL_INTERRUPT_HW2 21
#define CYGNUM_HAL_INTERRUPT_HW3 22
#define CYGNUM_HAL_INTERRUPT_HW4 23
#define CYGNUM_HAL_INTERRUPT_HWS5 24
The data passed to the ISR is pulled from a data tatzleigterrupt_data) which immediately follows the

interrupt vector table. With 25 interrupts, the data table starts at address 0x80000464 on atlas.

An application may create a normal C function with the above prototype to be an ISR. Just poke its address into the
table at the correct index and enable the interrupt at its source. The return value of the ISR is ignored by RedBoot.

146

Chapter 5. Installation and Testing

Memory Maps

Memory Maps RedBoot sets up the following memory map on the Atlas board.

Physical Address Range Description

0x00000000 - OxO7ffffff SDRAM
0x08000000 - Ox17ffffff PClI Memory Space
0x18000000 - Ox1bdfffff PCI 1/O Space
0x1be00000 - Ox1bffffff System Controller

0x1c000000 - Ox1dffffff System flash
0x1e000000 - Ox1e3fffff Monitor flash
0x1f000000 - Ox1fbfffff FPGA

Rebuilding RedBoot

These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described @hapter 3

export TARGET=atlas_mips32_4kc
export TARGET=atlas_mips64_5kc
export ARCH_DIR=mips

export PLATFORM_DIR=atlas

Use one of the TARGET settings only.

The names of configuration files are listed above with the description of the associated modes.

MIPS/MIPS32(CoreLV 4Kc)+MIPS64(CorelLV 5Kc) Malta Board

Overview

RedBoot supports both front facing serial ports and the built in ethernet port for communication and downloads.
The default serial port settings are 38400,8,N,1. RedBoot runs from and supports flash management for the system
flash region.

The following RedBoot configurations are supported:

Configuration Mode Description File

ROM [ROM] RedBoot running from thefredboot ROM.ecm
board’s flash boot sector.

RAM [RAM] RedBoot running from redboot RAM.ecm
RAM with RedBoot in the
flash boot sector.

147

Chapter 5. Installation and Testing

148

Initial Installation

RedBoot is installed using the code download facility built into the Malta board. See the Malta User manual for
details, and also the Malta download formattie Section calledlalta download format

Quick download instructions

Here are quick start instructions for downloading the prebuilt RedBoot image.

1. Locate the prebuilt files in the bin directoryeleteall I andredboot_ROM.fl
2. Make sure switch S5-1 is ON. Reset the board and verify that the LED displayrieadlsDL .
3. Make sure your parallel port is connected to the 1284 port Of the Atlas board.
4. Send thaleleteall.fl file to the parallel port to erase previous images:
$ cat deleteall.fl >/dev/Ip0
When this is complete, the LED display should re&atbted .
5. Send the RedBoot image to the board:
$ cat redboot_ ROM.fl >/dev/Ip0

When this is complete, the LED display should show the last address programmed. This will be something
like: 1fc17000 .

6. Change switch S5-1 to OFF and reset the board. The LED display shoulge¢egaebt .

7.Run the RedBoofis init andfconfig commands to initialize the flash. Sdee Section calledFlash Image
System (FISih Chapter 2andthe Section calledersistent State Flash-based Configuration and Coritrol
Chapter Zor details.

Malta download format
In order to download RedBoot to the Malta board, it must be converted to the Malta download format.

The Atlas/Malta Developer’s KitCD contains an srecconv.pl utility which requires Perl. This utility is part of
the yamon/yamon-src-02.00.tar.gz tarball on the Dev Kit CD. The path in the expanded tarbaljds
mon/binftools . To use srecconv to convert the S-record file:

$ cp redboot_ROM.srec redboot_ROM.rec
$ srecconv.pl -ES L -A 29 redboot ROM

The resulting file is name@dboot_ROM.fI

Additional commands

Theexeccommand which allows the loading and execution of Linux kernels, is supported for this architecture (see
the Section calledExecuting Programs from RedBoiot Chapter 2. The execparameters used for MIPS boards
are:

-b <addr>

-w <time>

Chapter 5. Installation and Testing

Location to store command line and environment passed to kernel

Wait time in seconds before starting kernel

-c "params”

<addr>

Parameters passed to kernel

Kernel entry point, defaulting to the entry point of the last image loaded

Linux kernels on MIPS platforms expect the entry point to be called with arguments in the registers equivalent to
a C call with prototype:

void Linux(int argc, char **argv, char **envp);

RedBoot will place the appropriate data at the offset specified bylth@arameter, or by default at address
0x80080000, and will set the arguments accordingly when calling into the kernel.

The default entry point, if no image with explicit entry point has been loaded and none is specified, is 0x80000750.

Interrupts

RedBoot uses an interrupt vector table which is located at address 0x80000200. Entries in this table are pointers to
functions with this protoype:

int irg_handler(unsigned vector, unsigned data)

On the malta board, the vector argument is one of 22 interrupts defined in
hal/mips/malta/ VERSIONinclude/plf_intr.h

#define CYGNUM_HAL_INTERRUPT_SOUTH_BRIDGE_INTR 0
#define CYGNUM_HAL_INTERRUPT_SOUTH_BRIDGE_SMI 1

#define CYGNUM_HAL_INTERRUPT_CBUS_UART 2
#define CYGNUM_HAL_INTERRUPT_COREHI 3
#define CYGNUM_HAL_INTERRUPT_CORELO 4
#define CYGNUM_HAL_INTERRUPT_COMPARE 5
#define CYGNUM_HAL_INTERRUPT_TIMER 6
#define CYGNUM_HAL_INTERRUPT_KEYBOARD 7
#define CYGNUM_HAL_INTERRUPT_CASCADE 8
#define CYGNUM_HAL_INTERRUPT_TTY1 9
#define CYGNUM_HAL_INTERRUPT_TTYO 10
#define CYGNUM_HAL_INTERRUPT 11 11
#define CYGNUM_HAL_INTERRUPT_FLOPPY 12
#define CYGNUM_HAL_INTERRUPT_PARALLEL 13
#define CYGNUM_HAL_INTERRUPT_REAL_TIME_CLOCK 14
#define CYGNUM_HAL_INTERRUPT_I2C 15
#define CYGNUM_HAL_INTERRUPT_PCI_AB 16
#define CYGNUM_HAL_INTERRUPT_PCI_CD 17

149

Chapter 5. Installation and Testing

150

#define CYGNUM_HAL_INTERRUPT_MOUSE 18
#define CYGNUM_HAL_INTERRUPT_19 19
#define CYGNUM_HAL_INTERRUPT_IDE_PRIMARY 20
#define CYGNUM_HAL_INTERRUPT_IDE_SECONDARY 21

The data passed to the ISR is pulled from a data tatzleifterrupt_data) which immediately follows the
interrupt vector table. With 22 interrupts, the data table starts at address 0x80000258.

An application may create a normal C function with the above prototype to be an ISR. Just poke its address into the
table at the correct index and enable the interrupt at its source. The return value of the ISR is ignored by RedBoot.

Memory Maps

Memory Maps RedBoot sets up the following memory map on the Malta board.

NOTE: The virtual memory maps in this section use a C and B column to indicate whether or not the region is
cached (C) or buffered (B).

Physical Address Range C B Description

0x80000000 - Ox8iffffff Y Y SDRAM

0x9e000000 - Ox9edfffff Y N System flash (cached)
0x9fc00000 - OxOfffffff Y N System flash (mirrored)
0xa8000000 - Oxb7ffffff N N PClI Memory Space
0xb4000000 - Oxb40fffff N N Galileo System Controller
0xb8000000 - Oxb80fffff N N Southbridge / ISA
0xb8100000 - Oxbbdfffff N N PCI I/O Space
0xbe000000 - Oxbe3fffff N N System flash (noncached)
0xbf00O0000 - Oxbfffffff N N Board logic FPGA

Rebuilding RedBoot

These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described @hapter 3

export TARGET=malta_mips32_4kc

export ARCH_DIR=mips
export PLATFORM_DIR=malta

The names of configuration files are listed above with the description of the associated modes.

Chapter 5. Installation and Testing

MIPS/RM7000 PMC-Sierra Ocelot

Overview

RedBoot uses the front facing serial port. The default serial port settings are 38400,8,N,1. RedBoot also supports
ethernet. Management of onboard flash is also supported.

The following RedBoot configurations are supported:

Configuration Mode Description File

ROM [ROM] RedBoot running from theredboot_ ROM.ecm
board’s flash boot sector.

RAM [RAM] RedBoot running from redboot_RAM.ecm
RAM with RedBoot in the
flash boot sector.

Additional commands

Theexeccommand which allows the loading and execution of Linux kernels, is supported for this architecture (see
the Section calledExecuting Programs from RedBoiot Chapter 2. The execparameters used for MIPS boards

are:
-b <addr>
Location to store command line and environment passed to kernel
-w <time>
Wait time in seconds before starting kernel
-Cc "params”

Parameters passed to kernel

<addr>
Kernel entry point, defaulting to the entry point of the last image loaded

Linux kernels on MIPS platforms expect the entry point to be called with arguments in the registers equivalent to
a C call with prototype:

void Linux(int argc, char **argv, char **envp);

RedBoot will place the appropriate data at the offset specified bykth@arameter, or by default at address
0x80080000, and will set the arguments accordingly when calling into the kernel.

The default entry point, if no image with explicit entry point has been loaded and none is specified, is 0x80000750.

151

Chapter 5. Installation and Testing

Memory Maps

RedBoot sets up the following memory map on the Ocelot board.

Note that these addresses are accessed through kseg0/1 and thus translate to the actual address range 0x8000000(
Oxbfffffff, depending on the need for caching/non-caching access to the bus.

NOTE: The virtual memory maps in this section use a C and B column to indicate whether or not the region is
cached (C) or buffered (B).

Physical Address Range Description

0x00000000 - OxOfffffff SDRAM

0x10000000 - Ox1Offffff PCI 1/O space
0x12000000 - Ox13ffffff PClI Memory space
0x14000000 - 0x1400ffff Galileo system controller
0x1c000000 - 0x1c0000ff PLD (board logic)
0x1fc00000 - Oxifc7ffff flash

Rebuilding RedBoot

These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described i@hapter 3

export TARGET=ocelot
export ARCH_DIR=mips
export PLATFORM_DIR=rm7000/ocelot

The names of configuration files are listed above with the description of the associated modes.

MIPS/VR4375 NEC DDB-VRC4375

152

Overview

RedBoot supports only serial port 1, which is connected to the upper of the stacked serial connectors on the board.
The default serial port settings are 38400,8,N,1. FLASH management is also supported.

The following RedBoot configurations are supported:

Configuration Mode Description File

ROMRAM [ROMRAM] RedBoot running from [redboot ROMRAM.ecm
RAM, but contained in the
board’s flash boot sector.

Chapter 5. Installation and Testing

Mode
[RAM]

Configuration
RAM

Description File

RedBoot running from redboot RAM.ecm
RAM with RedBoot in the
flash boot sector.

Initial Installation Method

A device programmer should be used to program a socketed FLASH part (AMD 29F040). The board as delivered
is configured for a 512K EPROM. To install a FLASH ROM, Jumpers J30, J31 and J36 need to be changed as
described in the board’s User Manual.

Special RedBoot Commands

None.

Memory Maps

RedBoot sets up the memory map primarily as described in the board’s User Manual. There are some minor
differences, noted in the following table:

Virtual

Addresses

80000000-81FFFFFF

AO0000000-A1FFFFFF
AC000000-AC0B0000

AF000000-AF0001FF
BC000000-BCOFFFFF
BC100000-BDFFFFFF

Physical Resource
Addresses
00000000-01FFFFFF
00000000-01FFFFFF
0C000000-0COBFFFF
0F000000-0F0001FF
1C000000-1COFFFFF

1C100000-1DFFFFFF

Base SDRAM (cached)
Base SDRAM (uncached)
PCI 10 space

VRC4375 Registers
VRC4372 Registers
PCI Memory space

1FCO00000-1FC7FFFF BFC00000-BFC7FFFF FLASH ROM
80000000-8000000D C0000000-C000000D RTC
8000000E-80007FFF CO00000E-CO007FFF NVRAM
81000000-81FFFFFF C1000000-C1FFFFFF Z85C30 DUART
82000000-82FFFFFF C2000000-C2FFFFFF 78536 Timer

83000000-83FFFFFF
87000000-87FFFFFF

C3000000-C3FFFFFF
C7000000-C7FFFFFF

8255 Parallel port
Seven segment display

NOTE: By default the VRC4375 SIMM control registers are not programmed since the values used must
depend on the SIMMs installed. If SIMMs are to be used, correct values must be placed in these registers
before accessing the SIMM address range.

NOTE: The allocation of address ranges to devices in the PCI 10 and memory spaces is handled by the eCos
PCI support library. They do not correspond to those described in the board User Manual.

153

Chapter 5. Installation and Testing

NOTE: The MMU has been set up to relocate the VRC4372 supported devices mapped at physical addresses
Ox8xxxxxxx to virtual addresses OXCXXXXXXX.

Ethernet Driver

The ethernet driver is in two parts:

A generic ether driver for the Intel i21143 device is locatediéns/eth/intel/i21143 . Its package name is
CYGPKG_DEVS_ETH_INTEL_I21143

The platform-specific ether driver is devs/eth/mips/vrc4375 . Its package is CYG-
PKG_DEVS_ETH_MIPS_VRC4375This tells the generic driver the address in IO memory of the chip, for example,
and other configuration details. The ESA (MAC address) is by default collected from on-board serial EEPROM,
unless configured statically within this package.

Rebuilding RedBoot

These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described @hapter 3

export TARGET=vrc4373

export ARCH_DIR=mips
export PLATFORM_DIR=vrc4373

The names of configuration files are listed above with the description of the associated modes.

PowerPC/MPC860T Analogue & Micro PowerPC 860T

154

Overview

RedBoot uses the SMCL1 serial port. The default serial port settings are 38400,8,N,1. Ethernet is also supported
using the RJ-45 connector. Management of onboard flash is also supported.

The following RedBoot configurations are supported:

Configuration Mode Description File

ROMRAM [ROMRAM] RedBoot running from [redboot_ ROMRAM.ecm
RAM, but contained in the
board’s flash boot sector.

Chapter 5. Installation and Testing

Initial Installation Method
RedBoot must be installed at the A & M factory.

Special RedBoot Commands

None.

Memory Maps

Memory Maps RedBoot sets up the following memory map on the MBX board.

Physical Address Range Description

0x00000000 - 0x007fffff DRAM
0xfe000000 - OxfeOfffff flash (AMD29LV8008B)
0xff000000 - OxffOfffff MPC registers

Rebuilding RedBoot

These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described i@hapter 3

export TARGET=viper
export ARCH_DIR=powerpc
export PLATFORM_DIR=viper

The names of configuration files are listed above with the description of the associated modes.

PowerPC/MPC8XX Motorola MBX

Overview

RedBoot uses the SMC1/COM1 serial port. The default serial port settings are 38400,8,N,1. Ethernet is also sup-
ported using the 10-base T connector.

Management of onboard flash is also supported.

The following RedBoot configurations are supported:

Configuration Mode Description File

ROM [ROM] RedBoot running from thefredboot ROM.ecm
board’s flash boot sector.

155

Chapter 5. Installation and Testing

156

Configuration Mode Description File

RAM [RAM] RedBoot running from redboot RAM.ecm
RAM with RedBoot in the

flash boot sector.

Initial Installation Method

Device programmer is used to program the XU1 socketed flash part (AM29F040B) with the ROM mode image of
RedBoot. Use the on-board EPPC-Bug monitor to update RedBoot.

This assumes that you have EPPC-Bug in the on-board flash. This can be determined by setting up the board
according to the following instructions and powering up the board.

The EPPC-Bug prompt should appear on the SMC1 connector at 9600 baud, 8N1.

1. Set jumper 3 to 2-3 [allow XU1 flash to be programmed]
2. Set jumper 4 to 2-3 [boot EPPC-Bug]

If it is available, program the flash by following these steps:

1. Prepare EPPC-Bug for download:
EPPC-Bug>lo 0
At this point the monitor is ready for input. It will not return the prompt until the file has been downloaded.

2. Use the terminal emulator's ASCII download feature (or a simple clipboard copy/paste operation) to download
theredboot.ppcbug file.

Note that on Linux, Minicom’s ASCII download feature seems to be broken. A workaround is to load the file
into emacs (or another editor) and copy the full contents to the clipboard. Then press the mouse paste-button
(usually the middle one) over the Minicom window.

3. Program the flash with the downloaded data:
EPPC-Bug>pflash 40000 60000 fc000000

4. Switch off the power, and change jumper 4 to 1-2. Turn on the power again. The board should now boot using
the newly programmed RedBoot.

Special RedBoot Commands

None.

Chapter 5. Installation and Testing

Memory Maps

Memory Maps RedBoot sets up the following memory map on the MBX board.

Physical Address Range Description

0x00000000 - 0x003fffff DRAM

0xfal00000 - 0xfal00003 LEDs

0xfe000000 - OxfeO7ffff flash (AMD29F040B)
0xff000000 - OxffOfffff MPC registers

Rebuilding RedBoot

These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described i@hapter 3

export TARGET=mbx
export ARCH_DIR=powerpc
export PLATFORM_DIR=mbx

The names of configuration files are listed above with the description of the associated modes.

SuperH/SH3(SH7708) Hitachi EDK7708

Overview
RedBoot uses the serial port. The default serial port settings are 38400,8,N,1.
Management of onboard flash is also supported.

The following RedBoot configurations are supported:

Configuration Mode Description File

ROM [ROM] RedBoot running from thefredboot ROM.ecm
board’s flash boot sector.

RAM [RAM] RedBoot running from redboot RAM.ecm
RAM with RedBoot in the
flash boot sector.

Initial Installation Method

Program the ROM RedBoot image into flash using an eprom programmer.

157

Chapter 5. Installation and Testing

Memory Maps
RedBoot sets up the following memory map on the EDK7708 board.

Physical Address Range Description

0x80000000 - 0x8001ffff Flash (AT29LV1024)

0x88000000 - 0x881fffff DRAM
0xa4000000 - 0xa40000ff LED ON
0xb8000000 - 0xb8000Off LED ON

Rebuilding RedBoot

These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described i@hapter 3

export TARGET=edk7708
export ARCH_DIR=sh
export PLATFORM_DIR=edk7708

The names of configuration files are listed above with the description of the associated modes.

SuperH/SH3(SH7709) Hitachi Solution Engine 7709

Overview

This description covers the MS7709SEOQ1 variant. theeSection calle®GuperH/SH3(SH77X9) Hitachi Solution
Engine 77X%or instructions for the MS7729SEOQ1 and MS7709SSE0101 variants.

RedBoot uses the COM1 and COM2 serial ports. The default serial port settings are 38400,8,N,1. Ethernet is also
supported using the 10-base T connector.

Management of onboard flash is also supported.

The following RedBoot configurations are supported:

Configuration Mode Description File

ROM [ROM] RedBoot running from theredboot_ ROM.ecm
board’s flash boot sector.

RAM [RAM] RedBoot running from redboot_RAM.ecm
RAM with RedBoot in the
flash boot sector.

158

Chapter 5. Installation and Testing

Initial Installation Method

The Solution Engine ships with the Hitachi boot monitor in EPROM which allows for initial programming of
RedBoot:

1. Set switch SW4-1 to ON [boot from EPROM]
2.Connect a serial cable to CN1 (SCI) and power up the board.

3. After the boot monitor banner, invoke the flash download/program command:

Ready >fl

4. The monitor should now ask for input:

Flash ROM data copy to RAM
Please Send A S-format Record

At this point copy the RedBoot ROM SREC file to the serial port:
$ cat redboot_SE7709RP_ROM.eprom.srec > /dev/ttySO
Eventually you should see something like

Start Addrs = A1000000
End Addrs = AILXXXXXX
Transfer complete

from the monitor.

5. Set switch SW4-1 to OFF [boot from flash] and reboot the board. You should now see the RedBoot banner.

Special RedBoot Commands

The execcommand which allows the loading and execution of Linux kernels is supported for this boatesee

-b <addr>

-i <addr>

-] <size>

-c "args"

-m <flags>

-f <flags>

Section calledExecuting Programs from RedBdatChapter 2. Theexecparameters used for the SE77x9 are:

Parameter block address. This is normally the first page of the kernel image and defaults to 0x8c101000

Start address of initrd image

Size of initrd image

Kernel arguments string

Mount rdonly flags. If set to a non-zero value the root partition will be mounted read-only.

RAM disk flags. Should normally be 0x4000

159

Chapter 5. Installation and Testing

-r <device number>

-l <type>

160

Root device specification. /dev/ram is 0x0101

Loader type
Finally the kernel entry address can be specified as an optional argument. The default is 0x8¢c102000

For the the SE77x9, Linux by default expects to be loaded at 0x8c001000 which conflicts with the data space
used by RedBoot. To work around this, either change the CONFIG_MEMORY_START kernel option to a
higher address, or use the compressed kernel image and load it at a higher address. For example, setting
CONFIG_MEMORY_START to 0x8c100000, the kernel expects to be loaded at address 0x8c101000 with the
entry point at 0x8¢102000.

Memory Maps

RedBoot sets up the following memory map on the SE77x9 board.

Physical Address Range Description

0x80000000 - 0x803fffff Flash (MBM29LV160)
0x81000000 - 0x813fffff EPROM (M27C800)
0x8c000000 - Ox8dffffff DRAM

0xb0000000 - OxbO3fffff Ethernet (DP83902A)
0xb0800000 - OxbO8fffff 16C552A
0xb1000000 - Oxb100ffff Switches
0xb1800000 - Oxbi8fffff LEDs

0xb8000000 - Oxbbffffff PCMCIA (MaruBun)

Ethernet Driver

The ethernet driver uses a hardwired ESA which can, at present, only be changed in CDL.

Rebuilding RedBoot

These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described i@hapter 3

export TARGET=se77x9
export ARCH_DIR=sh
export PLATFORM_DIR=se77x9

The names of configuration files are listed above with the description of the associated modes.

Chapter 5. Installation and Testing

SuperH/SH3(SH7729) Hitachi HS7729PClI

Overview

RedBoot uses the COM1 and COM2 serial ports (and the debug port on the motherboard). The default serial port
settings are 38400,8,N,1. Ethernet is also supported using a D-Link DFE-530TX PCI plugin card. Management of
onboard flash is also supported.

The following RedBoot configurations are supported:

Configuration Mode Description File

ROM [ROM] RedBoot running from theredboot_ ROM.ecm
board’s flash boot sector.

RAM [RAM] RedBoot running from redboot RAM.ecm
RAM with RedBoot in the
flash boot sector.

Initial Installation Method

A ROM mode RedBoot image must be programmed into the two EPROMSs. Two files with a split version of the
ROM mode image is provided: it is also possible to recreate these fromedheot.bin file, but requires the
split_word.c program imal/sh/hs7729pci/ VERSIONmisc to be built and executed with thedboot.bin

filename as sole argument.

After doing this it is advised that another ROM mode image of RedBoot is programmed into the on-board flash,
and that copy be used for booting the board. This allows for software programmed updates of RedBoot instead of
having to reprogram the EPROMSs.

1. Program the EPROMSs with RedBoot. The .lo image should go in socket M1 and the .hi image in socket M2.
2. Set switch SW1-6 to ON [boot from EPROM]

3. Follow the instructions under Flash management for updating the flash copy of RedBoot, but force the flash
destination address with

-f 0x80400000
due to setting of the SW1-6 switch.

4. Set switch SW1-6 to OFF [boot from flash] and reboot the board. You should now see the RedBoot banner. At
this time you may want to issue the commdisdnit to initialize the flash table with the correct addresses.

Special RedBoot Commands

The execcommand which allows the loading and execution of Linux kernels is supported for this boatbesee
Section called&Executing Programs from RedBdotChapter 2. Theexecparameters used for the HS7729PCl are:

161

Chapter 5. Installation and Testing

-b <addr>

Parameter block address. This is normally the first page of the kernel image and defaults to 0x8c101000
-i <addr>

Start address of initrd image
-j <size>

Size of initrd image
-c "args"

Kernel arguments string
-m <flags>

Mount rdonly flags. If set to a non-zero value the root partition will be mounted read-only.
-f <flags>

RAM disk flags. Should normally be 0x4000

-r <device number>

Root device specification. /dev/ram is 0x0101

-l <type>
Loader type
Finally the kernel entry address can be specified as an optional argument. The default is 0x8¢102000

On the HS7729PCI, Linux expects to be loaded at address 0x8c101000 with the entry point at 0x8¢102000. This
is configurable in the kernel using the CONFIG_MEMORY_START option.

Memory Maps
RedBoot sets up the following memory map on the HS7729PCI board.

Physical Address Range Description

0x80000000 - 0x803fffff Flash (MBM29LV160)
0x80400000 - 0x807fffff EPROM (M27C800)
0x82000000 - Ox82ffffff SRAM

0x89000000 - Ox89ffffff SRAM

0x8c000000 - Ox8fffffff SDRAM

0xa8000000 - 0xa800ffff SuperlO (FDC37C935A)
0xa8400000 - Oxa87fffff USB function (ML60851C)
0xa8800000 - Oxa8bfffff USB host (SL11HT)
0xa8c00000 - Oxa8c3ffff Switches

0xa8c40000 - Oxa8cTffff LEDs

0xa8c80000 - Oxa8cfffff Interrupt controller
0xb0000000 - Oxb3ffffff PCI (SD0001)
0xb8000000 - Oxbbffffff PCMCIA (MaruBun)

162

Chapter 5. Installation and Testing

Rebuilding RedBoot

These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described i@hapter 3

export TARGET=hs7729pci
export ARCH_DIR=sh
export PLATFORM_DIR=hs7729pci

The names of configuration files are listed above with the description of the associated modes.

SuperH/SH3(SH77X9) Hitachi Solution Engine 77X9

Overview

This description covers the MS7729SE01 and MS7709SSEO0101 variants. tHeeeSection called
SuperH/SH3(SH7709) Hitachi Solution Engine 7T@9instructions for the MS7709SEOQ1 variant.

RedBoot uses the COM1 and COMZ2 serial ports. The default serial port settings are 38400,8,N,1. Ethernet is also
supported using the 10-base T connector. Management of onboard flash is also supported.

The following RedBoot configurations are supported:

Configuration Mode Description File

ROM [ROM] RedBoot running from thefredboot ROM.ecm
board’s flash boot sector.

RAM [RAM] RedBoot running from redboot RAM.ecm
RAM with RedBoot in the
flash boot sector.

Initial Installation Method

The Solution Engine ships with the Hitachi boot monitor in EPROM which allows for initial programming of
RedBoot:

1. Set switches SW4-3 and SW4-4 to ON [boot from EPROM]
2.Connect a serial cable to COM2 and power up the board.

3. After the boot monitor banner, invoke the flash download/program command:
Ready >fl

163

Chapter 5. Installation and Testing

4. The monitor should now ask for input:

Flash ROM data copy to RAM
Please Send A S-format Record

At this point copy the RedBoot ROM SREC file to the serial port:
$ cat redboot_ROM.eprom.srec > /dev/ttySO
Eventually you should see something like

Start Addrs = A1000000
End Addrs = ALXXXXXX
Transfer complete

from the monitor.

5. Set switch SW4-3 to OFF [boot from flash] and reboot the board. You should now see the RedBoot banner.

Special RedBoot Commands

The execcommand which allows the loading and execution of Linux kernels is supported for this boatbesee
Section calledExecuting Programs from RedBdatChapter 2. Theexecparameters used for the SE77x9 are:

-b <addr>

Parameter block address. This is normally the first page of the kernel image and defaults to 0x8¢101000
-i <addr>

Start address of initrd image
- <size>

Size of initrd image
-c "args"

Kernel arguments string
-m <flags>

Mount rdonly flags. If set to a non-zero value the root partition will be mounted read-only.
-f <flags>

RAM disk flags. Should normally be 0x4000

-r <device number>

Root device specification. /dev/ram is 0x0101

-l <type>
Loader type
Finally the kernel entry address can be specified as an optional argument. The default is 0x8¢102000

On the SE77x9, Linux expects to be loaded at address 0x8¢c101000 with the entry point at 0x8c102000. This is
configurable in the kernel using the CONFIG_MEMORY_START option.

164

Chapter 5. Installation and Testing

Memory Maps

RedBoot sets up the following memory map on the SE77x9 board.

Physical Address Range Description

0x80000000 - 0x803fffff Flash (MBM29LV160)
0x81000000 - 0x813fffff EPROM (M27C800)
0x8c000000 - Ox8dffffff SDRAM

0xb0000000 - OxbO3fffff Ethernet (DP83902A)
0xb0400000 - OxbOTfffff SuperlO (FDC37C935A)
0xb0800000 - OxbObfffff Switches

0xb0c00000 - Oxbfffffif LEDs

0xb1800000 - Oxbilbfffff PCMCIA (MaruBun)

Ethernet Driver

The ethernet driver uses a hardwired ESA which can, at present, only be changed in CDL.

Rebuilding RedBoot

These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described @hapter 3

export TARGET=se77x9
export ARCH_DIR=sh
export PLATFORM_DIR=se77x9

The names of configuration files are listed above with the description of the associated modes.

SuperH/SH4(SH7751) Hitachi Solution Engine 7751

Overview

RedBoot uses the COML1 serial port. The default serial port settings are 38400,8,N,1. Ethernet is also supported
using the 10-base T connector. Management of onboard flash is also supported.

The following RedBoot configurations are supported:

Configuration Mode Description File

ROM [ROM] RedBoot running from theredboot_ ROM.ecm
board’s flash boot sector.

165

Chapter 5. Installation and Testing

Configuration Mode Description File

RAM [RAM] RedBoot running from redboot RAM.ecm
RAM with RedBoot in the
flash boot sector.

Initial Installation Method

The Solution Engine ships with the Hitachi boot monitor in EPROM which allows for initial programming of
RedBoot:

1. Set switches SW5-3 and SW5-4 to ON [boot from EPROM]
2.Connect a serial cable to COM1 and power up the board.
3. After the boot monitor banner, invoke the flash download/program command:

Ready >fl

4. The monitor should now ask for input:

Flash ROM data copy to RAM
Please Send A S-format Record

At this point copy the RedBoot ROM SREC file to the serial port:
$ cat redboot_ ROM.eprom.srec > /dev/ttySO
Eventually you should see something like

Start Addrs = A1000000
End Addrs = ALXXXXXX
Transfer complete

from the monitor.
5. Set switch SW5-3 to OFF [boot from flash] and reboot the board. You should now see the RedBoot banner.

Special RedBoot Commands

The execcommand which allows the loading and execution of Linux kernels is supported for this boatbgsee
Section calledExecuting Programs from RedBdatChapter 2. Theexecparameters used for the SE7751 are:

-b <addr>

Parameter block address. This is normally the first page of the kernel image and defaults to 0x8c101000
-i <addr>

Start address of initrd image
-j <size>

Size of initrd image

166

Chapter 5. Installation and Testing

¢ "args"
Kernel arguments string
-m <flags>
Mount rdonly flags. If set to a non-zero value the root partition will be mounted read-only.
-f <flags>

RAM disk flags. Should normally be 0x4000

-r <device number>

Root device specification. /dev/ram is 0x0101

-l <type>
Loader type
Finally the kernel entry address can be specified as an optional argument. The default is 0x8¢102000

On the SE7751, Linux expects to be loaded at address 0x8c101000 with the entry point at 0x8¢c102000. This is
configurable in the kernel using the CONFIG_MEMORY_START option.

Memory Maps
RedBoot sets up the following memory map on the SE7751 board.

Physical Address Range Description

0x80000000 - Ox803fffff Flash (MBM29LV160)
0x81000000 - 0x813fffff EPROM (M27C800)
0x8c000000 - Ox8fffffff SDRAM

0xb8000000 - Oxbsffffff PCMCIA (MaruBun)
0xb9000000 - Oxboffffff Switches

0xba000000 - Oxbaffffff LEDs

0xbd000000 - Oxbdffffff PCI MEM space
0xbe200000 - Oxbe23ffff PCI Ctrl space
0xbe240000 - Oxbe27ffff PCI 10 space

Ethernet Driver

The ethernet driver uses a hardwired ESA which can, at present, only be changed in CDL.

Rebuilding RedBoot

These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described @hapter 3

export TARGET=se7751
export ARCH_DIR=sh

167

Chapter 5. Installation and Testing

export PLATFORM_DIR=se7751

The names of configuration files are listed above with the description of the associated modes.

168

lll. The eCos Hardware Abstraction
Layer (HAL)

Chapter 6. Introduction

This is an initial specification of theCosHardware Abstraction Layer (HAL). The HAL abstracts the underlying
hardware of a processor architecture and/or the platform to a level sufficient for the eCos kernel to be ported onto
that platform.

Caveat: This documentis an informal description of the HAL capabilities and is not intended to be full documen-
tation, although it may be used as a source for such. It also describes the HAL as it is currently implemented for
the architectures targeted in this release. It most closely describes the HALs for the MIPS, 1386 and PowerPC
HALs. Other architectures are similar but may not be organized precisely as described here.

171

Chapter 6. Introduction

172

Chapter 7. Architecture, Variant and Platform

We have identified three levels at which the HAL must operate.

» Thearchitecture HALabstracts the basic CPU architecture and includes things like interrupt delivery, context
switching, CPU startup etc.

« The variant HAL encapsulates features of the CPU variant such as caches, MMU and FPU features. It also
deals with any on-chip peripherals such as memory and interrupt controllers. For architectural variations, the
actual implementation of the variation is often in the architectural HAL, and the variant HAL simply provides
the correct configuration definitions.

« The platform HAL abstracts the properties of the current platform and includes things like platform startup,
timer devices, I/O register access and interrupt controllers.

The boundaries between these three HAL levels are necessarily blurred since functionality shifts between levels on
a target-by-target basis. For example caches and MMU may be either an architecture feature or a variant feature.
Similarly, memory and interrupt controllers may be on-chip and in the variant HAL, or off-chip and in the platform
HAL.

Generally there is a separate package for each of the architecture, variant and package HALSs for a target. For some
of the older targets, or where it would be essentially empty, the variant HAL is omitted.

173

Chapter 7. Architecture, Variant and Platform

174

Chapter 8. General principles

The HAL has been implemented according to the following general principles:

1. The HAL is implemented in C and assembler, although the eCos kernel is largely implementedtiTis
is to permit the HAL the widest possible applicability.

2. All interfaces to the HAL are implemented by CPP macros. This allows them to be implemented as inline
C code, inline assembler or function calls to external C or assembler code. This allows the most efficient
implementation to be selected without affecting the interface. It also allows them to be redefined if the platform
or variant HAL needs to replace or enhance a definition from the architecture HAL.

3. The HAL provides simple, portable mechanisms for dealing with the hardware of a wide range of architectures
and platforms. It is always possible to bypass the HAL and program the hardware directly, but this may lead
to a loss of portability.

175

Chapter 8. General principles

176

Chapter 9. HAL Interfaces

This section describes the main HAL interfaces.

Base Definitions

These are definitions that characterize the properties of the base architecture that are used to compile the portable
parts of the kernel. They are concerned with such things a portable type definitions, endianness, and labeling.

These definitions are supplied by #g/hal/basetype.h header file which is supplied by the architecture HAL.
It is included automatically byyg/infra/cyg_type.h

Byte order

CYG_BYTEORDER

This defines the byte order of the target and must be set to @#@rLSBFIRSTOr CYG_MSBFIRST

Label Translation

CYG_LABEL_NAME(name)

This is a wrapper used in some C and-€ files which use labels defined in assembly code or the linker
script. It need only be defined if the default implementatioryigrinfra/cyg_type.h , which passes the
name argument unaltered, is inadequate. It should be pairedcWithLABEL_DEFN().

CYG_LABEL_DEFN(name)

This is a wrapper used in assembler sources and linker scripts which define labels. It need only be defined
if the default implementation iryg/infra/cyg_type.h , Which passes the name argument unaltered, is
inadequate. The most usual alternative definition of this macro prepends an underscore to the label name.

Base types

cyg_halint8
cyg_halint16
cyg_halint32
cyg_halint64
cyg_halcount8
cyg_halcountl16
cyg_halcount32
cyg_halcount64
cyg_halbool

177

Chapter 9. HAL Interfaces

These macros define the C base types that should be used to define variables of the given size. They only need to
be defined if the default types specifiedcyy/infra/cyg_type.h cannot be used. Note that these are only the
base types, they will be composed withned andunsigned to form full type specifications.

Atomic types

cyg_halatomic CYG_ATOMIC

These types are guaranteed to be read or written in a single uninterruptible operation. It is architecture defined what
size this type is, but it will be at least a byte.

Architecture Characterization

These are definition that are related to the basic architecture of the CPU. These include the CPU context save
format, context switching, bit twiddling, breakpoints, stack sizes and address translation.

Most of these definition are found ieyg/hal/hal_arch.h . This file is supplied by the architecture HAL.
If there are variant or platform specific definitions then these will be foundyiihal/var_arch.h or
cyg/hal/plf_arch.h . These files are include automatically by this header, so need not be included explicitly.

Register Save Format

typedef struct HAL_SavedRegisters
{

/* architecture-dependent list of registers to be saved */
} HAL_SavedRegisters;

This structure describes the layout of a saved machine state on the stack. Such states are saved during thread context
switches, interrupts and exceptions. Different quantities of state may be saved during each of these, but usually a
thread context state is a subset of the interrupt state which is itself a subset of an exception state. For debugging
purposes, the same structure is used for all three purposes, but where these states are significantly different, this
structure may contain a union of the three states.

Thread Context Initialization

Sp

178

HAL_THREAD_INIT_CONTEXT(sp, arg, entry, id)

This macro initializes a thread’s context so that it may be switched tésny THREAD_SWITCH_CONTEXT(The
arguments are:

A location containing the current value of the thread’s stack pointer. This should be a variable or a structure
field. The SP value will be read out of here and an adjusted value written back.

arg

entry

Chapter 9. HAL Interfaces

A value that is passed as the first argument to the entry point function.

The address of an entry point function. This will be called according the C calling conventions, and the value
of arg will be passed as the first argument. This function should have the following type sigreitlire
entry(CYG_ADDRWORD arg).

A thread id value. This is only used for debugging purposes, it is ORed into the initialization pattern for
unused registers and may be used to help identify the thread from its register dump. The least significant 16
bits of this value should be zero to allow space for a register identifier.

Thread Context Switching

from

to

HAL_THREAD_LOAD_CONTEXT(to)
HAL_THREAD_SWITCH_CONTEXT(from, to)

These macros implement the thread switch code. The arguments are:

A pointer to a location where the stack pointer of the current thread will be stored.

A pointer to a location from where the stack pointer of the next thread will be read.

For HAL_THREAD_LOAD_CONTEXT¢he current CPU state is discarded and the state of the destination thread is
loaded. This is only used once, to load the first thread when the scheduler is started.

ForHAL_THREAD_SWITCH_CONTEXTthe state of the current thread is saved onto its stack, using the current value
of the stack pointer, and the address of the saved state pla¢é&drm . The value in*to is then read and the
state of the new thread is loaded from it.

While these two operations may be implemented with inline assembler, they are normally implemented as calls
to assembly code functions in the HAL. There are two advantages to doing it this way. First, the return link of
the call provides a convenient PC value to be used in the saved context. Second, the calling conventions mean
that the compiler will have already saved the caller-saved registers before the call, so the HAL need only save the
callee-saved registers.

The implementation ofiAL_THREAD_SWITCH_CONTEXT@aves the current CPU state on the stack, including the
current interrupt state (or at least the register that contains it). For debugging purposes it is useful to save the entire
register set, but for performance only the ABI-defined callee-saved registers need be saved. If it is implemented,
the optionCYGDBG_HAL_COMMON_CONTEXT_SAVE_MINBoDktols how many registers are saved.

The implementation oHAL_THREAD_LOAD_CONTEXT(pads a thread context, destroying the current context.

With a little care this can be implemented by sharing code with THREAD_SWITCH_CONTEXT(JTo load a

thread context simply requires the saved registers to be restored from the stack and a jump or return made back to
the saved PC.

179

Chapter 9. HAL Interfaces

Note that interrupts are not disabled during this process, any interrupts that occur will be delivered onto the stack
to which the current CPU stack pointer points. Hence the stack pointer should never be invalid, or loaded with a
value that might cause the saved state to become corrupted by an interrupt. However, the current interrupt state
is saved and restored as part of the thread context. If a thread disables interrupts and does something to cause a
context switch, interrupts may be re-enabled on switching to another thread. Interrupts will be disabled again when
the original thread regains control.

Bit indexing

HAL_LSBIT_INDEX(index, mask)
HAL_MSBIT_INDEX(index, mask)

These macros placeindex the bit index of the least significant bit mask. Some architectures have instruction
level support for one or other of these operations. If no architectural support is available, then these macros may
call C functions to do the job.

Idle thread activity

HAL_IDLE_THREAD_ACTION(count)

It may be necessary under some circumstances for the HAL to execute code in the kernel idle thread’s loop. An
example might be to execute a processor halt instruction. This macro provides a portable way of doing this. The
argument is a copy of the idle thread’s loop counter, and may be used to trigger actions at longer intervals than
every loop.

Reorder barrier
HAL_REORDER_BARRIER()

When optimizing the compiler can reorder code. In some parts of multi-threaded systems, where the order of
actions is vital, this can sometimes cause problems. This macro may be inserted into places where reordering
should not happen and prevents code being migrated across it by the compiler optimizer. It should be placed
between statements that must be executed in the order written in the code.

Breakpoint support

HAL_BREAKPOINT(label)

HAL_BREAKINST

HAL_BREAKINST_SIZE

These macros provide support for breakpoints.

HAL_BREAKPOINT() executes a breakpoint instruction. The label is defined at the breakpoint instruction so that
exception code can detect which breakpoint was executed.

180

Chapter 9. HAL Interfaces

HAL_BREAKINSTcontains the breakpoint instruction code as an integer vellMe.BREAKINST_SIZEs the size of
that breakpoint instruction in bytes. Together these may be used to place a breakpoint in any code.

GDB support

HAL_THREAD_GET_SAVED_REGISTERS(sp, regs)
HAL_GET_GDB_REGISTERS(regval, regs)
HAL_SET_GDB_REGISTERS(regs, regval)

These macros provide support for interfacing GDB to the HAL.

HAL_THREAD_GET_SAVED_REGISTERS(@@xtracts a pointer to a HAL SavedRegisters structure from a stack
pointer value. The stack pointer passed in should be the value saved by the thread context macros. The macro will
assign a pointer to the HAL_SavedRegisters structure to the variable passed as the second argument.

HAL_GET_GDB_REGISTERS(franslates a register state as saved by the HAL and into a register dump in the format
expected by GDB. It takes a pointer to a HAL_SavedRegisters structureriegheargument and a pointer to the
memory to contain the GDB register dump in tlegval argument.

HAL_SET_GDB_REGISTERS()translates a GDB format register dump into a the format expected by the HAL. It
takes a pointer to the memory containing the GDB register dump imetpeal argument and a pointer to a
HAL_SavedReqgisters structure in tregs argument.

Setjmp and longjmp support

CYGARC_JMP_BUF_SIZE
hal_jmp_buf[CYGARC_JMP_BUF_SIZE]
hal_setjmp(hal_jmp_buf env)
hal_longjmp(hal_jmp_buf env, int val)

These functions provide support for thes@mp() andlongjmp() functions. Refer to the C library for further
information.

Stack Sizes

CYGNUM_HAL_STACK_SIZE_MINIMUM
CYGNUM_HAL_STACK_SIZE_TYPICAL

The values of these macros define the minimum and typical sizes of thread stacks.

CYGNUM_HAL_STACK_SIZE_MINIMUdefines the minimum size of a thread stack. This is enough for the thread

to function correctly within eCos and allows it to take interrupts and context switches. There should also be
enough space for a simple thread entry function to execute and call basic kernel operations on objects like mu-
texes and semaphores. However there will not be enough room for much more than this. When creating stacks
for their own threads, applications should determine the stack usage needed for application purposes and then add
CYGNUM_HAL_STACK_SIZE_MINIMUM

181

Chapter 9. HAL Interfaces

CYGNUM_HAL_STACK_SIZE_TYPICAIs a reasonable increment ov@¥GNUM_HAL_STACK_SIZE_MINIMUMSuU-
ally about 1kB. This should be adequate for most modest thread needs. Only threads that need to define significant
amounts of local data, or have very deep call trees should need to use a larger stack size.

Address Translation

CYGARC_CACHED_ADDRESS(addr)
CYGARC_UNCACHED_ADDRESS(addr)
CYGARC_PHYSICAL_ADDRESS(addr)

These macros provide address translation between different views of memory. In many architectures a given mem-
ory location may be visible at different addresses in both cached and uncached forms. It is also possible that the
MMU or some other address translation unit in the CPU presents memory to the program at a different virtual
address to its physical address on the bus.

CYGARC_CACHED_ADDRESS3(anslates the given address to its location in cached memory. This is typically where
the application will access the memory.

CYGARC_UNCACHED_ADDRESS8@nslates the given address to its location in uncached memory. This is typically
where device drivers will access the memory to avoid cache problems. It may additionally be necessary for the
cache to be flushed before the contents of this location is fully valid.

CYGARC_PHYSICAL_ADDRESS@ranslates the given address to its location in the physical address space. This is
typically the address that needs to be passed to device hardware such as a DMA engine, ethernet device or PCI
bus bridge. The physical address may not be directly accessible to the program, it may be re-mapped by address
translation.

Global Pointer

CYGARC_HAL_SAVE_GP()
CYGARC_HAL_RESTORE_GP()

These macros insert code to save and restore any global data pointer that the ABI uses. These are necessary when
switching context between two eCos instances - for example between an eCos application and RedBoot.

Interrupt Handling

182

These interfaces contain definitions related to interrupt handling. They include definitions of exception and interrupt
numbers, interrupt enabling and masking, and realtime clock operations.

These definitions are normally found égg/hal/hal_intr.h . This file is supplied by the architecture HAL.
Any variant or platform specific definitions will be found ayg/hal/var_intr.h , cyg/hal/plf_intr.h or
cyg/hal/hal_platform_ints.h in the variant or platform HAL, depending on the exact target. These files are
include automatically by this header, so need not be in