
1

RocketPort/ISA
API (6508) for the MS-DOS

Operating System

First Edition, December 1993
Revised April 1994

Copyright © 1993, 1994, 1995, 1996. Comtrol Corporation.
All Rights Reserved.
Comtrol Corporation makes no representations or warranties with regard to
the contents of this guide or to the suitability of the Comtrol RocketPort
controllers for any particular purpose.

Trademarks

The Comtrol logo is a registered trademark of Control Systems, Inc.
Comtrol is a trademark of Comtrol Corporation.
The RocketPort series is a registered trademark of Comtrol Corporation.
Borland is a registered trademark of Borland International, Inc.
Microsoft and MS-DOS are registered trademarks of Microsoft Corporation.
Product names mentioned herein may be trademarks and/or registered
trademarks of their respective companies.

Document Number: 6508D1.ELE

2

Scope

This guide describes the following information about the DOS application
program interface (API) for RocketPort controllers:
• Installing the software and hardware
• Running the sample application
• Developing applications

Note: If you want to install the Interrupt 14 device driver, see the Reference
Card.

Purpose

This guide explains installing and using the API functions.

Audience

This guide is for people who develop applications for the MS-DOS system.

Prerequisites

This guide assumes that you are running an ISA-based personal computer
with the following:
• MS-DOS operating system (level 5.0 or higher)
• One of the following compilers:

- A Borland® C++ compiler (level 3.1 and higher)

- A Microsoft® C/C++ compiler (level 7.0 and higher)

Suggestions

Use Chapter 1 to install the API. Use Chapter 2 and Appendix A to develop
applications that run with the API. If you have any problems, see Chapter 3.

Organization

Section 1. Installing RocketPort Systems
Provides you with the following information:
• Product introduction
• Software and hardware installation overview
• Installing the software and hardware
• Configuring controllers
• Running the sample application
Section 2. Developing Applications
Provides you with information about how to develop applications using the API.
Section 3. Troubleshooting and Technical Support
Provides you with troubleshooting and technical support information for your
RocketPort series controller.
Appendix A. API Functions
Contains the API asynchronous functions available for writing the application.
Appendix B. Double Buffering Example
Illustrates the double buffering example on your diskette.

Software or Document Changes

For information that is not in this guide, see the README.API file on the
software diskette. If this file is empty, that means that this guide reflects the
API on the diskette.

Before You Begin

3

Before You Begin
Scope ...2
Purpose..2
Audience..2
Prerequisites...2
Suggestions ...2
Organization ...2
Software or Document Changes ..2
Table of Contents
Examples...3
Flowchart ..4
Tables ..4
Section 1. Installing RocketPort Systems
1.1. Product Introduction...5
1.2. Software and Hardware Installation Procedures............5
1.3. Installing the Software ...5
1.4. Installing the Controller ...7
1.5. Running the Sample Application8
Section 2. Developing Applications
2.1. API Features ..9
2.2. API Functions ..9
2.3. Writing the Configuration File.......................................10
2.4. Flowchart for Using the API ...11
2.5. Application Example...11
2.6. Include Files (Step 3) ..12
2.7. Configuring RocketPort Controllers (Step 4).................12
2.8. Using API Calls (Step 5)..12

2.8.1. Understanding Device Numbers.........................13
2.8.2. Configuration Parameters for Serial Devices13

2.8.2.1. Open Type Parameter13
2.8.2.2. Baud Parameter14
2.8.2.3. Parity Parameter...................................14
2.8.2.4. Data Bits Parameter14
2.8.2.5. Stop Bits Parameter14
2.8.2.6. Flow Control Parameter........................14
2.8.2.7. Detection Enable Parameter.................15
2.8.2.8. Modem Control Parameter15

2.9. Writing Serial Data...15
2.10. Exiting the Application...15
2.11. Reading Serial Data..15
2.12. Installing and Detecting Events.....................................15
2.13. Double Buffering Transmit and Receive Data17

2.14. Building Applications (Step 6) 17
Section 3. Troubleshooting and Technical Support
3.1. Resolving Installation Problems.................................... 18
3.2. Placing a Support Call.. 19
3.3. Retrieving Future Software Updates 20
Appendix A. API Functions

aaChangeModemState 22
aaClose ... 22
aaEnPeriodicEvent.. 23
aaExit ... 23
aaFlush .. 24
aaGetCtlStatus.. 24
aaGetModemStatus... 25
aaGetRxCount ... 25
aaGetRxStatus .. 26
aaGetTxCount ... 26
aaInit.. 27
aaInstallCtrlCHandler.................................... 27
aaInstallMdmChgEvent.................................. 28
aaInstallPeriodicEvent 28
aaInstallRxEvent .. 29
aaOpen ... 29
aaRead ... 30
aaReadWithStatus .. 31
aaReconfigure .. 31
aaSendBreak ... 32
aaSetCloseDelay.. 33
aaWrite ... 33
EvModemChange .. 34
EvPeriodic .. 35
EvRxData... 35

Appendix B. Double Buffering Example

Examples

Example 2-1. Sample Event Function.................................... 16

Table of Contents

4

Flowcharts

Flowchart 1-1. Hardware and Software Installation
Overview ...5

Flowchart 2-1. How to Use the API...11

Tables

Table 1-1. Common Switch Settings 6

Table 2-1. API Functions.. 9
Table 2-2. Configuration File Parameters 10
Table 2-3. Mapping Device Numbers.................................... 13
Table 2-4. Open Type Flags... 13
Table 2-5. Baud Flags .. 13
Table 2-6. Parity Flags .. 14
Table 2-7. Data Bits Flags ... 14
Table 2-8. Stop Bits Flags.. 14
Table 2-9. Flow Control Flags ... 14
Table 2-10. Detection Enable Flags .. 15
Table 2-11. Modem Control Output Flags 15

Table 3-1. System I/O Addresses – Up to 3FF 18
Table 3-2. System I/O Address Aliases – Above 3FF............ 18
Table 3-3. Support Call Information..................................... 19

Table A-1. API Function Reference .. 21

5 Installating RocketPort/ISA Systems

This section contains a product overview and discusses installing the API for
your system. The DOS API and Interrupt 14 device driver are delivered on one
diskette.
Note: See the Int 14 Reference Card for Interrupt 14 information.

1.1. Product Introduction

The RocketPort multiport serial controller series fits into a 16-bit ISA slot of a
personal computer. The RocketPort series uses a 36 MHz processor specifically
designed to process asynchronous serial communications, thereby maximizing
performance and eliminating bottlenecks.
RocketPort series uses Application Specific Integrated Circuits (ASICs)
technology to replace most hardware components, including:
• The processor
• Serial controller
• Bus interface logic and other miscellaneous logic
The RocketPort series is I/O mapped eliminating memory mapping conflicts.
The RocketPort series supports RS-232 or RS-422 mode and connects easily to
the interface box or your peripherals, depending on the type of RocketPort
controller you purchased.
The device driver supports up to four RocketPort controllers (128 ports) in one
PC. You can install any combination of the series, which includes the following:

The RocketPort series is easy to install using Subsection 1.2.

1.2. Software and Hardware Installation Procedures

Use Flowchart 1-1 for an overview of installing a RocketPort series system.

Flowchart 1-1. Hardware and Software Installation Overview
Note: If you have an installation or operations problem, see Chapter 3.

1.3. Installing the Software

You may want to install the API in a directory named \ROCKET so that the
examples illustrated in this guide match your environment.
The following shows a sample installation onto your hard disk (assuming the
hard disk is drive C):
1. Insert the Comtrol API and Device Driver for MS-DOS diskette into the

appropriate drive.
2. Change to the drive that you installed the diskette on.
3. Enter the following:

install
4. Select the API button by pressing <Enter> or <Click>. <Click> means that

you should move the cursor over the item and press the mouse button.

Name Number
of Ports Interface Type

RocketPort 4* 4 Requires interface box
RocketPort 4J 4 RJ45 cables not included

RocketPort Quadcable* 4 Includes a fanout cable with standard DB25 or
DB9 connectors

RocketPort 8 8 Requires interface box
RocketPort 8J 8 RJ11 cables not included

RocketPort Octacable 8 Includes a fanout cable with standard DB25 or
DB9 connectors

RocketPort 16 16 Requires 16-port interface box (Standard DB25
or Rack Mount RJ45 available)

RocketPort 32 32 Requires two 16-port interface boxes (Standard
DB25 or Rack Mount RJ45 available)

Connect the interface box to the controller
 your peripherals to the interface box (if you have not already

Install the API (see 1.3).

(if applicable) and

 done so). For specific cabling information, see the appropriate
 Hardware Reference Card.

Set the switches on the controller and
install the controller (see 1.4).

Update the AUTOEXEC.BAT file.

Develop applications using Section 2 and Appendix A.

Section 1. Installating RocketPort/ISA Systems

6 Installating RocketPort/ISA Systems

Installating RocketPort/ISA Systems

Note: Press <F1> on any item for button-sensitive Help.
5. Select the I/O address range for each RocketPort series controller.

a. Use the<Tab> key and the <ALT> <Down Arrow> key combination or
<click> on the arrow next to the I/O Address Range box to view the I/O
address ranges.

b. Use an <Arrow> key or the mouse cursor to highlight the I/O range you
want to select.

c. Press <Enter> or <Click> to execute the selection.
The I/O address identifies the location in the system’s I/O space used to pass
control information between the system and the controller.
For the first controller, you will select a 68-byte I/O address range. For
subsequent controllers, you will select a 64-byte range.
Most peripherals use I/O address ranges between 0 and 3FF hexadecimal.
If you have peripherals installed above 400h, you may experience an I/O
conflict.
RocketPort controllers use I/O address ranges at 400h intervals above the
I/O address range. Make sure that other peripherals in the system do not
use these I/O address ranges. See Table 3-1 for information about common
I/O usage.

4. Enter a path name for the API directory, if you do not want to use the
default path, \ROCKET.

5. Select an interrupt (IRQ) for the controller that does not conflict with an
existing interrupt.

6. Select <Ok to Install>.
7. Select <OK> at the confirmation screen.
8. Set the DIP switches on the controller as directed in the summary screen.

You may want to fill in the blank switches provided for you or place a check
mark in Table 1-1, which illustrates common I/O ranges.
Press <ENTER> to view the DIP switch settings for additional controllers.

Notes:You may want to set the DIP switches for the controllers while
looking at the summary screen.
You can also use the \ROCKET\INSTALL.LOG file to set the switches,

if you do not set them at this time.
9. Make sure that you note the line that you must add to the AUTOEXEC.BAT

file. For example:
SET ROCKETCFG=C:\ROCKET\CONFIG.DAT

This path is the same path where the API is installed.
Note: After you create your own applications, you may need to change the

configuration file (see Subsection 2.3).
10. When your cursor returns to the DOS prompt, remove the diskette from the

drive.
11. Edit the AUTOEXEC.BAT file as directed in Step 9.
Go to the next subsection to install the controller.

ON

12345678

ON

12345678

ON

12345678

ON

12345678Controller #1 Controller #2

Controller #3 Controller #4

Table 1-1. Common Switch Settings
Controller #1
I/O Address

Range

DIP Switch Settings
Controller #1 determines other

controller settings

100 - 143 hex

140 - 183 hex

180 - 1C3 hex
(Default)

1st ISA 2nd ISA

ON

12345678

ON

12345678

ON

12345678

ON

12345678

3rd ISA 4th ISA

1st ISA 2nd ISAON

12345678

ON

12345678

ON

12345678

ON

12345678

3rd ISA 4th ISA

1st ISA 2nd ISAON

12345678

ON

12345678

12345678 12345678

3rd ISA 4th ISA

Installating RocketPort/ISA Systems 7

Installating RocketPort/ISA Systems

1.4. Installing the Controller

To prepare your controller for installation, you may need to set the I/O address
DIP switch. The default I/O address range is 180 through 1C3. You must
change the I/O address settings on any additional controllers, even if you
select the default address range.
If you did not set the DIP switch on the controller or controllers during the
software installation, do so at this time. Make sure that you set each controller
as advised during the software installation or use the information in the
\ROCKET\INSTALL.LOG file.
After you set the I/O DIP switch, you are ready to install the controller. Use the
following steps to install the controller:
1. Turn the power switch for the system unit to the OFF position.
2. Remove the system unit cover.
3. Select a slot to install the controller.
4. Remove the expansion slot cover.
5. Insert the controller in the expansion slot, make sure that it is properly

seated.
6. Attach the controller to the chassis with the expansion slot screw. Repeat

Steps 3 through 5 for each controller.
7. Replace the cover on the system unit.
If connecting a system with an interface box:

a. Attach the male end of the RocketPort cable to the controller and the
female end to the connector on the interface box labeled Host.

Note: If you have a RocketPort 32, the connector labelled J1 corresponds to
ports 0 through 15 on the interface box and the connector labeled J2
(closest to the bus) corresponds to ports 16 through 31.

b. Connect the peripherals to the interface box.
Note: The ports on the interface box are numbered from 0 to 3, 7, or 15 on the

standard DB25 interface. The Rack Mount RJ45 interface is numbered

200 - 243 hex

240 - 283 hex

280 - 2C3 hex

300 - 343 hex

340 - 383 hex

Table 1-1. Common Switch Settings (Continued)
Controller #1
I/O Address

Range

DIP Switch Settings
Controller #1 determines other

controller settings

1st ISA 2nd ISAON

12345678

ON

12345678

12345678 12345678

3rd ISA 4th ISA

1st ISA 2nd ISA

12345678

ON

12345678

ON

12345678

ON

12345678

3rd ISA 4th ISA

ON

1st ISA 2nd ISA

12345678

ON

12345678

ON

12345678

ON

12345678

3rd ISA 4th ISA

ON

1st ISA 2nd ISAON

12345678

ON

12345678

ON

12345678

ON

12345678

3rd ISA 4th ISA

1st ISA 2nd ISAON

12345678

ON

12345678

12345678 12345678

3rd ISA 4th ISA

380 - 3C3 hex

Table 1-1. Common Switch Settings (Continued)
Controller #1
I/O Address

Range

DIP Switch Settings
Controller #1 determines other

controller settings

1st ISA 2nd ISAON

12345678

ON

12345678

ON

12345678

ON

12345678

3rd ISA 4th ISA

8 Installating RocketPort/ISA Systems

Installating RocketPort/ISA Systems

from 1 to 16.
c. If applicable, set each port to the appropriate communications mode

(RS-232 or RS-422) for your peripheral using the slide switch.
If connecting a system with a Quad/Octacable:

a. Attach the male end of the Quad/Octacable to the controller.
b. Connect the Quad/Octacable to the peripherals.

If connecting a RocketPort 4J or 8J controller:
a. Connect your peripheral devices to the RJ style connector on the

controller.
After installing and configuring the controller, you are ready to attach your
peripherals. Refer to the Hardware Reference Card if you need information
about the pinouts for the connectors.
After connecting the peripherals, you can go to the next subsection to run the
sample application. The sample application shows you how to use the API.
Use Section 2 and Appendix A to develop applications.

1.5. Running the Sample Application

The sample program, TERM, is a simple terminal emulator program which
uses one RocketPort port at a time. TERM uses an ASCII terminal connected to
port 0 of the Comtrol interface box with an RS-232 cable. This allows testing
for both transmit and receive. The terminal should be configured for 9,600
baud, 8 data bits, 1 stop bit, and no parity.
Optionally, if you do not have an available terminal to run the sample
application, you can use the loopback plug that came with your controller.
Note: If your configuration is different, you must change the parameters in the

aaOpen call to match your requirements. Make sure you recompile before
running the sample program.

Use the following procedure to run the sample program:
At the DOS prompt, change to the c:\ROCKET\SAMPLE directory.
12. Type TERM at the DOS prompt. The following displays:

Serial Device Number:
Optionally, insert the loopback plug in Port 0 of the interface box.

13. Type 0 and then press <Enter>. The following displays:
Serial Device Number 0 Hit F10 to Quit

The TERM application allows you to type any character on the PC keyboard
and have it appear on the terminal, and type any character on the terminal
and have it appear on the PC screen.
Optionally, if you are using the loopback plug, any character that you type
on the keyboard appears on the screen.

14. Enter several characters using the PC keyboard. You should see these
keystrokes appear on the ASCII terminal.

15. Enter several characters using the ASCII terminal keyboard. You should
see these keystrokes appear on the PC screen.

If the sample fails, see Section 3.
Use Section 2 and Appendix A to develop applications.

9 Developing Applications

This section describes the following topics:
• API features and functions
• Writing the configuration file
• Using the API (flowchart and example)
• Include files
• Configuring the controllers
• Using API calls to write the application

- Understanding device numbers
- Configuration parameters for serial devices

• Writing serial data
• Exiting the application
• Reading serial data
• Installing and detecting events
• Building applications

2.1. API Features

The API contains the following features:
• Supports up to 4 RocketPort controllers in a PC.
• Supports up to 32 serial devices per controller.
• Provides baud rates from 50 to 230.4 K baud.
• Supports all modem control lines available on the controller.
• Provides detection of modem control line changes.
• Provides direct control of modem control outputs.
• Provides direct read of modem control inputs.
• Provides detection of receive errors:

- Parity
- Receiver overrun
- Framing
- Buffer overflow

• Supports 1K bytes of receive data buffering and 256 bytes of transmit data
buffering.

• Supports hardware (RTS/CTS) flow control.
• Supports software (XON/XOFF) flow control.
• Provides read counts of buffered transmit and receive data.

• Provides send break and receive break detection.
• Provides installable event functions for the following:

- Receive data available
- Modem control changes
- Periodic event

For information about event functions see Subsection 2.12.

2.2. API Functions

Table 2-1 lists API functions that are available to a system application. For
detailed information about the functions, see Appendix A.

Table 2-1. API Functions

Function Name Description
aaChangeModemState Changes the state of modem

output lines.

aaClose Closes a device.
aaEnPeriodicEvent Enables/disables dispatching of

periodic event function.
aaExit Performs cleanup when exiting

application.

aaFlush Flushes transmit or receive
buffer, or both.

aaGetCtlStatus Gets controller status.
aaGetModemStatus Gets modem status.

aaGetRxCount Gets count of data bytes available
in receive buffer.

aaGetRxStatus Gets status of receive buffer.
aaGetTxCount Gets count of data bytes in

transmit buffer.

aaInit Executes controller and API
initialization.

aaInstallCtrlCHandler Installs a handler for the CTRL+C
key interrupt.

Section 2. Developing Applications

10 Developing Applications

* These are not part of the API, but are part of the application.

2.3. Writing the Configuration File

The configuration file is used by the aaInit() function to obtain information
about all the RocketPort controllers installed in the system. The aaInit()
function checks the ROCKETCFG environment variable to determine the name
and path of this file.
When you installed the API, the configuration file was created for you, and you
were instructed to place the following line in your AUTOEXEC.BAT file:

SET ROCKETCFG=filepath
where filepath is the complete path to the configuration file. This path is the
same path where the API was installed.

The initial configuration file allows you to run the sample application program
(TERM), but when you create and distribute your own application you may wish
to use a different configuration file.
The configuration file contains between two and five lines:
• The first line gives the IRQ number that is used by all RocketPort

controllers.
• The second through fifth lines give the starting I/O addresses for the first

through the fourth controllers
The first controller uses a 68-byte block of I/O address space, subsequent
controllers use 64-byte blocks. I/O address lines should be placed in the file only
for controllers that are actually installed in the system. Table 2-2 summarizes
this information.

Each RocketPort controller uses up to three additional “alias” I/O address
ranges located at 400h intervals above the address ranges described above.
For example, if the first controller is addressed at 100, the I/O address ranges
used by that controller are:
• 100 - 143
• 500 - 543

aaInstallMdmChgEvent Installs an event function to
handle modem change events.

aaInstallPeriodicEvent Installs a periodic event function.
aaInstallRxEvent Installs an event function to

handle Rx data available events.

aaOpen Opens a device for reading or
writing, or both.

aaRead Reads serial data.
aaReadWithStatus Reads serial data and status.

aaReconfigure Reconfigures communication
parameters.

aaSendBreak Sends a break signal.
aaSetCloseDelay Sets the maximum aaClose()

transmit drain delay.

aaWrite Writes serial data.
EvModemChange* Modem control input change

event function.
EvPeriodic* Periodic event function.

EvRxData* Receive data available event
function.

Table 2-1. API Functions (Continued)

Function Name Description

Table 2-2. Configuration File Parameters

Line
Number Parameter Allowable Values Block

Size

1 IRQ number 3, 4, 5, 9, 10, 11, 12,
15

NA

2 Ctrl 1 I/O 100, 140, 180, 1C0,
200, 240, 280, 2C0,
300, 340, 380

68 bytes

3 Ctrl 2 I/O 100, 140, 180, 1C0,
200, 240, 280, 2C0,
300, 340, 380

64 bytes

4 Ctrl 3 I/O 100, 140, 180, 1C0,
200, 240, 280, 2C0,
300, 340, 380

64 bytes

5 Ctrl 4 I/O 100, 140, 180, 1C0,
200, 240, 280, 2C0,
300, 340, 380

64 bytes

Developing Applications 11

Developing Applications

• 900 - 943
• D00 - D43
This is normally of no concern because ISA peripherals often use only 10 bits of
I/O addressing, meaning they are limited to addresses below 400h.
Note: In order for your application to locate the configuration file, the ROCK-

ETCFG environment variable must point to it. This is done with the DOS
SET command, usually placed in the AUTOEXEC.BAT file.

2.4. Flowchart for Using the API

This subsection contains the steps required to write and execute an
application program using the API. Each of these steps are described in detail
in the following subsections.
The remainder of this chapter assumes that the API is installed in a directory
named \ROCKET, and that you will place your application source code in a new
directory called \ROCKET\CUSTOM.
You may wish to create your own directory structure for source code. In that
case, these instructions and the make files must be adjusted accordingly. A
complete application demonstrating the use of the API is provided in the
\ROCKET\SAMPLE directory.

Flowchart 2-1. How to Use the API

2.5. Application Example

The following application corresponds to the previous flowchart and the
following subsections explain specific steps in detail.
#include <stdio.h>
#include <dos.h>
#include <process.h>
#include <stdlib.h>
#include <conio.h>
#include "api.h" Step 3

(2.6)
main(void)
{
 unsigned int InitReturn;
 char Buf[80];
 int i,Dev,Cnt,Err;

Step 1 Create a new subdirectory called \ROCKET\CUSTOM.

Copy the appropriate make file from the
\ROCKET\SAMPLE directory into the
\ROCKET\CUSTOM directory.

Step 2

Write the application source files. Make sure that
you provide #include statements for the API.H file.

Step 3

The first action in the main() is to call the
aaInstallCtrlCHandler() and aaInit() functions.

Step 4

Write the remainder of your application using API
calls to access the serial devices as needed:
* Open, reconfigure, and close
* Write and read serial data
* Modem control outputs
* Receive and modem change events

Step 5

* Call aaExit() before leaving the application

Build the application.Step 6

Execute the application.Step 7

12 Developing Applications

Developing Applications

 /* Initialize API */
 aaInstallCtrlCHandler();
 if((InitReturn = aaInit()) != NO_ERR) Step 4
 { (2.7)
 printf("Init fail: %x\n",InitReturn);
 aaExit();
 exit(1);
 }

 /* Get serial device and display terminal emulator screen */
 printf("Serial Device Number (0-15): ");
 gets(Buf); /* get serial device */ Step 5
 sscanf(Buf,"%d",&Dev); (2.8-
 system("cls"); /* clear screen */ 2.12)
 printf("Serial Device Number %d\t\t\tHit F10 to Quit\n",Dev);

 /* Open the device */
 if((Err = aaOpen(Dev,
 COM_TX | COM_RX,
 COM_BAUD_9600,
 COM_PAR_NONE,
 COM_DATABIT_8,
 COM_STOPBIT_1,
 COM_FLOW_NONE,
 COM_DEN_PARITY | COM_DEN_RXOVR | COM_DEN_FRAME,
 COM_MDM_DTR)) != 0)
 {
 printf("Failure - Could not open device number %d, Error
 %d\n",Dev,Err);
 aaExit(); /* required API call before exiting */ Step 6
 exit(1); (2.13)
 }
 /* Infinite loop to handle console I/O and serial I/O */
 while(1)
 {
 /* Attempt to read char from serial device and write to screen */
 if((Cnt = aaRead(Dev,80,(unsigned char *)Buf)) > 0)
 {
 for(i = 0;i < Cnt;i++)
 putch(Buf[i]);
 }

 /* Attempt to read char from keyboard and write to serial device */
 if((bdos(11,0,0) & 0xff) == 0xFF) /* if char waiting */
 {
 Buf[0] = bdos(8,0,0) & 0xff; /* read keybd char */
 if((Buf[0] == '\0') && ((bdos(11,0,0)&0xff) == 0xff)) /* 2 char key */
 {
 Buf[1] = bdos(8,0,0) & 0xff; /* 2nd key */
 if(Buf[1] == 0x44) /* F10 = quit */
 break;
 }
 aaWrite(Dev,1,(unsigned char *)Buf); /* write char to serial device */
 }
 }

 aaClose(Dev,COM_MDM_RTS | COM_MDM_DTR); /* close device */
 aaExit(); /* required API call before exiting */
 return(0);
}

2.6. Include Files (Step 3)

The API.H file must be included in the .C source code files.

2.7. Configuring RocketPort Controllers (Step 4)

Configuration of the RocketPort controllers and the API is done using aaInit(),
as shown in the previous example. The aaInit() function must be called once
before any other API function (except aaInstallCtrlCHandler()) can be called. It
performs the configuration using the information in the configuration file
given in the ROCKETCFG environment variable. See Subsection 2.3 for
information about the format and placement of the configuration file.from the
system configuration. See Subsection 2.3 for information about the system
configuration.
Many applications also require that the DOS default CTRL+C key handler be
replaced with a handler that calls aaExit() (see Subsection 2.10). This is done
using aaInstallCtrlCHandler(). Once installed, this handler calls aaExit() if the
user terminates the application by pressing the CTRL+C or CTRL+BREAK keys.
If the application prevents program termination with these keys, the
aaIntallCtrlCHandler() function does not need to be called.

2.8. Using API Calls (Step 5)

The following subsections provide details about Step 5 of the API sample. The
topics include:
• Device numbers
• Configuration parameters for opening, closing, and reconfiguring serial

devices
- Open type
- Baud
- Parity
- Data bits
- Stop bits
- Flow control
- Detect enable

• Modem Control (output only)

Developing Applications 13

Developing Applications

2.8.1. Understanding Device Numbers

Each serial device is identified by a device number. Most API functions take
the device number as a parameter. The number of ports that exist on each
controller determines which device numbers map to which serial ports on
which controllers.
The device numbers always count sequentially from 0, with the first port on the
first controller in the configuration file assigned device number 0. Each
subsequent controller in the configuration file begins counting where the
previous controller left off. If there are more than one RocketPort controllers in
the system, the controller in the lowest numbered slot is the first controller.
For example, if there are three controllers located in slots 2, 4, and 5, having 8,
16, and 8 ports respectively, the device numbers would map out as shown in
Table 2-3.

You can determine how many controllers are installed in your system, the first
device number on each controller, and the number of devices on each controller
with the aaGetCtlStatus() function.

2.8.2. Configuration Parameters for Serial Devices

Before the application can use a serial device, it must be opened with
aaOpen(). To change the communication parameters while the device is open,
use aaReconfigure(). Once the line is no longer in use it should be closed with
aaClose().
There are a number of communication parameters used with one or more of the
aaOpen(), aaReconfigure(), and aaClose() functions. Each of these parameters is
described in the following subsections.

2.8.2.1. Open Type Parameter

The open type parameter is used in aaOpen() to identify whether the line is
being opened for transmit, receive, or both. The flags used for open type are
given in Table 2-4. This parameter is declared as follows:

unsigned int OpenType;

2.8.2.2. Baud Parameter

The baud parameter is used with aaOpen() and aaReconfigure() to set the baud
rate that the channel will operate at. You can assign only one of the flags
shown in Table 2-5 to the baud parameter. The baud parameter is declared as
follows:

unsigned char Baud;

Table 2-3. Mapping Device Numbers

Device Number Controller
 Number Slot Port Number on

the Controller

0 through 7 1 2 0 through 7

8 through 23 2 4 0 through 15

24 through 31 3 5 0 through 7

Table 2-4. Open Type Flags

Flag Meaning When the Flag is Set

COM_TX Open for transmit

COM_RX Open for receive

Table 2-5. Baud Flags

Flag Meaning When the
Flag is Set

COM_BAUD_50 50 baud

COM_BAUD_75 75 baud

COM_BAUD_110 110 baud

COM_BAUD_134 134 baud

COM_BAUD_150 150 baud

COM_BAUD_200 200 baud

COM_BAUD_300 300 baud

COM_BAUD_600 600 baud

COM_BAUD_1200 1,200 baud

COM_BAUD_1800 1,800 baud

COM_BAUD_2400 2,400 baud

COM_BAUD_3600 3,600 baud

COM_BAUD_4800 4,800 baud

14 Developing Applications

Developing Applications

2.8.2.3. Parity Parameter

The parity parameter is used by aaOpen() and aaReconfigure() to set the type of
parity checking done on receive and parity generation done on transmit. You
can assign only one of the flags shown in Table 2-6 to the parity parameter.
The parity parameter is declared as follows:

unsigned char Parity;

2.8.2.4. Data Bits Parameter

The data bits parameter is used by aaOpen() and aaReconfigure() to set the
number of data bits in each transmitted and received character. You can
assign only one of the flags shown in Table 2-7 to the data bits parameter. The
data bits parameter is declared as follows:

unsigned DataBits

2.8.2.5. Stop Bits Parameter

The stop bits parameter is used by aaOpen() and aaReconfigure() to set the
number of stop bits used in the framing of each transmitted and received
character. You can assign only one of the flags shown in Table 2-8 to the stop
bits parameter. The stop bits parameter is declared as follows:

unsigned char StopBits;

2.8.2.6. Flow Control Parameter

The flow control parameter is used by aaOpen() and aaReconfigure() to set the
flow control method. You can assign either COM_FLOW_NONE or any
combination of the remaining flags shown in Table 2-9 to the flow control
parameter.
The flow control parameter is declared as follows:

unsigned int FlowCtl;

COM_BAUD_7200 7,200 baud

COM_BAUD_9600 9,600 baud

COM_BAUD_19200 19,200 baud

COM_BAUD_38400 38,400 baud

COM_BAUD_57600 57,600 baud

COM_BAUD_76800 76,800 baud

COM_BAUD_115200 115,200 baud

COM_BAUD_230400 230,400 baud

Table 2-6. Parity Flags

Flag Meaning When
Flag is Set

COM_PAR_NONE No parity

COM_PAR_EVEN Even parity

COM_PAR_ODD Odd parity

Table 2-5. Baud Flags (Continued)

Flag Meaning When the
Flag is Set

Table 2-7. Data Bits Flags

Flag Meaning When
Flag is Set

COM_DATABIT_7 7 data bits

COM_DATABIT_8 8 data bits

Table 2-8. Stop Bits Flags

Flag Meaning When
Flag Set

COM_STOPBIT_1 1 stop bit

COM_STOPBIT_2 2 stop bits

Table 2-9. Flow Control Flags

Flag Meaning When Flag Set

COM_FLOW_NONE No flow control

COM_FLOW_IS Enable input software flow control

COM_FLOW_IH Enable input hardware flow control
using RTS

Developing Applications 15

Developing Applications

2.8.2.7. Detection Enable Parameter

The detection enable parameter is used by aaOpen() and aaReconfigure() to set
which events are detected by the API.
If a detection enable flag is set, an event function within the application is
dispatched when that event is detected. This assumes that the application has
installed the event function. See Subsection 2.12 for information about event
functions.
You can assign any combination of the flags shown in
Table 2-10 to the detection enable parameter. The detection enable parameter
is declared as follows:

unsigned int DetectEn;

2.8.2.8. Modem Control Parameter

The modem control parameter is used by aaOpen() to determine the initial
state of the modem control outputs. If a flag is set, the modem control line is
turned ON; otherwise it is OFF.
It is also used by aaClose() to determine which modem control outputs must be
cleared. If a flag is set, that modem control line is turned OFF; otherwise it is
not changed.
The modem control output flags are given in Table 2-11. The modem control
parameter is declared as follows:

unsigned ModemCtl;

2.9. Writing Serial Data

After a device is open, serial data can be written to it using aaWrite(). The
number of data bytes from previous aaWrite() calls that are still awaiting
transmission can be obtained with aaGetTxCount().

2.10.Exiting the Application

You must call aaExit() before exiting an application. This does final cleanup,
including removing the interrupt service routine (ISR) used by the API.

2.11.Reading Serial Data

After a device is open serial data can be read from it using aaRead(). The
number of receive data bytes that are buffered by the device can be obtained
with aaGetRxCount().
Using aaRead() by itself does not return any receive error information. If error
information is needed, you can determine if there are any errors in the device’s
receive buffer by calling aaGetRxStatus(). If errors exist, you can obtain the
error status of each receive data byte by reading the data with
aaReadWithStatus().

2.12.Installing and Detecting Events

When the controller needs to notify the system that something important has
occurred, it generates an interrupt and causes an event function to execute on
the system.
Event functions tell you what has happened and provide the appropriate
information for that event, which you can then process as needed.
The following receive events can occur on the system:
• Modem change event, one of the modem lines has changed for a serial

device.
• Receive data event, data has been received on a serial device.
• Periodic event, occurs 274 times per second.
You need a way to tie your application to these events. This is accomplished by
calling the aaInstallxxxEvent functions. By using an aaInstallxxxEvent function,

COM_FLOW_OS Enable output software flow control

COM_FLOW_OH Enable output hardware flow control
using CTS

COM_FLOW_OXANY Enable restart output on any Rx
character

Table 2-10. Detection Enable Flags

Flag Meaning When Flag Set

COM_DEN_NONE No event detection enabled

COM_DEN_MDM Enable modem control
change detection

COM_DEN_RDA Enable receive data available
detection

Table 2-9. Flow Control Flags (Continued)

Flag Meaning When Flag Set
Table 2-11. Modem Control Output Flags

Flag Modem Control Line

COM_MDM_RTS Request to send

COM_MDM_DTR Data terminal ready

16 Developing Applications

Developing Applications

you can give the system software the name of an application program function
that executes when a particular event occurs. The following aaInstallxxxEvent
functions are available:
• aaInstallMdmChangeEvent
• aaInstallPeriodicEvent
• aaInstallRxEvent
Example 2-1 provides event function examples and shows how to install event
functions. Notice that installing event functions is done shortly after the
controller is initialized.
Even after an event function is installed, it will not be dispatched unless that
event has been enabled. Modem change and receive data events are enabled or
disabled using the DetectEn parameter in the aaOpen() function. Periodic
events are enabled or disabled using the aaEnPeriodicEvent() function.

Example 2-1. Sample Event Function

#define NUMDEV 32 /* max number devices this app supports */

int FirstDev, MaxDev; /* first and maximum device numbers */
unsigned char CD_Change[NUMDEV]; /* indicates changes to CD modem input */
unsigned char ModemState[NUMDEV]; /* state of modem inputs for each device */

main() /* application main() fragment */
{ int NumDev;

 /* Initialize controller */
 aaInstallCtrlCHandler();
 if(aaInit() != NO_ERR)
 {
 printf("Initialization Failure\n");
 aaExit();
 exit(1);
 }

 /* Get device number range for 1 controller */
 if(aaGetCtlStatus(0,&FirstDev,&NumDev) != NO_ERR)
 {
 printf("Controller Status Failure\n");
 aaExit();
 exit(1);
 } }

MaxDev = FirstDev + NumDev - 1;

 /* Set up application event functions */
 aaInstallRxEvent(EvRxData);
 aaInstallMdmChangeEvent(aaModemChg);
 aaInstallPeriodicEvent(EvPeriodic);
 aaEnPeriodicEvent(TRUE);
 . . .
}

#pragma check_stack(off) /* Microsoft C only */

void ExRxData(int Dev) /* receive event function */
{
 int Count;

 Count = aaGetRxCount(Dev); /* get number bytes available */
 if(Count > BUF_SIZE)
 Count = BUF_SIZE);
 GetRxData(Dev,Count); /* application function to read the data */
}

void EvMdmChg(int Dev,unsigned char MdmChange,unsigned char MdmState)
{
 if(MdmChange & COM_MDM_CD) /* CD changed */
 {
 CD_Change[Dev]++; /* indicate change occurred */
 }
 ModemState[Dev] = MdmState; /* save current state of modem inputs */
}

void EvPeriodic(void) /* periodic event function */
{
 int Dev;

 for(Dev = FirstDev;Dev <= MaxDev;Dev++) /* check all devs for Tx data*/
 {
 SendTxData(Dev); /* application function to transmit data */
 }
}

#pragma check_stack(on) /* Microsoft C only */

Each of the previously described event functions require different parameters.
For example, the receive data event function only passes a device number to
the application, whereas the modem change event function passes a device, a
modem state, and a modem change parameter to the application’s event
function.
These parameters are described in Appendix A under the function names
prefixed with Ev.
The periodic event is different from the other events in that it occurs on regular
intervals regardless of what is occurring on the controller. One use for the
periodic event function is to allow the application to write data to devices in the
background. See Subsection 2.13 for more information.
Warnings: The event functions you write for your applications are actually

executing during a system interrupt service routine (ISR). It is very
important that you keep these event functions as short as possible.
Also, there are many standard C library functions that do not work
within an ISR, such as printf(). Using these functions can cause
unpredictable results and can even hang your system.
If using the Microsoft C compiler, stack checking must be disabled

Developing Applications 17

Developing Applications

during event functions and any functions called by event functions.
Stack checking can be turned off and on with:
#pragma check_stack(off)
#pragma check_stack(on)

2.13. Double Buffering Transmit and Receive Data

Each serial device on the RocketPort controller internally provides 250 bytes
of buffering for transmit data and 1K bytes of buffering for receive data. In
some applications this may not be sufficient.
For example, an application program may need to write large blocks of data at
infrequent intervals. If the application calls aaWrite() directly, only 250 bytes
are taken, and the device's internal transmit buffer may empty before the next
aaWrite() call occurs, leaving a period of time where no data is being
transmitted.
In cases like the one described above, additional buffering is needed. To
accomplish this, the data can be double buffered using event functions (see
Subsection 2.12). This allows the application to move serial data to and from
the buffers rather than directly accessing the device using aaWrite() and
aaRead(). The event function handles moving data between the device and the
buffer. Double buffering as described in this subsection adds additional
overhead, so it should only be done when an application requires it.
A sample program (\ROCKET\SAMPLE\DBUF.C) shows an example of double
buffering. Also included is a Borland C++ make file called MAKEDBUF.BC. The
source code is reproduced in this guide in Appendix B .
For double buffering of transmit data, use the periodic event function. This
function polls each device's buffer for data, and if data is available writes it to
the device using aaWrite(). The EvPeriodic() function in DBUF.C shows how to do
this.
The EnqTxData() is used in DBUF.C to write data into the transmit buffer. The
application calls EnqTxData() instead of writing directly to the device with
aaWrite(). Notice that EnqTxData() disables interrupts while manipulating the
write buffer pointers. This is necessary because EvPeriodic() is part of an
interrupt service routine (ISR) and you do not want it to suddenly interrupt and
change these pointers until you are completely done updating them.
For double buffering of receive data, the receive event function should be used.
This event function is not called unless the device has receive data available.
The event function then reads the data with aaRead() or aaReadWithStatus()
and places it in the receive buffer. A simple example using only aaRead() is
shown in the EvRxData() function in DBUF.C.
The DeqRxData() function is used in DBUF.C to read data from the receive
buffer. The application calls DeqRxData() instead of reading directly from the
device with aaRead(). Notice that DeqRxData() disables interrupts while
manipulating the read buffer pointers. EvRxData() is part of an ISR, so this is
necessary for the same reason interrupts were disabled in EnqTxData().

2.14.Building Applications (Step 6)

The application is built by executing the compiler’s make utility and a make
file. The make file contains the rules that the make utility uses to build the
application. If the application is contained entirely in a single source file
called TERM.C, then the make file copied in from the \ROCKET\SAMPLE
directory can be used as is. Otherwise, you must modify the make file to build
using your application source file names.

18 Troubleshooting

3.1. Resolving Installation Problems

If installation fails or you are trying to resolve a problem, you should try the
following before calling the Comtrol technical support line:
• Check the signals between your peripherals and the interface box to verify

that they match (if applicable). See the appropriate Hardware Reference
Card for information.

• Check to make sure the serial and interface cables are connected properly.
• Check to see if the DIP switch is set to the desired address by checking the

/ROCKET/INSTALL.LOG file with an editor against the settings on each
controller.

• Reseat the controller in the slot.
• Make sure that the expansion slot screw was replaced after inserting the

controller.
• Reinstall the API, selecting a different I/O address range for the controller.

For possible I/O address conflicts, see Tables 3-1 and 3-2.
Table 3-1 defines the 64-byte I/O address blocks from 0 through 3FFh and their
known uses. Table 3-2 defines the 64-byte I/O address blocks from 400 through
FFFh and their known uses.

Table 3-1. System I/O Addresses – Up to 3FF

Address
Block

Addresses
 Used Description

000 – 03F Reserved for Motherboard

040 – 07F Reserved for Motherboard

080 – 0BF Reserved for Motherboard

0C0 – 0FF Reserved for Motherboard

100 – 13F

140 – 17F

180 – 1BF

1C0 – 1FF 1F0 – 1F8 Fixed Disk

200 – 23F

240 – 27F 278 – 27F
LPT2, IDE controllers,
multifunction boards (game
ports)

280 – 2BF

2C0 – 2FF 2E8 – 2EF
2F8 – 2FF

COM4
COM2

300 – 33F

340 – 37F 378 – 37F LPT1

380 – 3BF 3B0 – 3BF Monochrome Display and LPT3

3C0 – 3FF

3D0 – 3DF
3E8 – 3EF
3F0 – 3F7
3F8 – 3FF

Graphics Monitor Adapter
COM3
Floppy Disk Controller
COM1

Table 3-2. System I/O Address Aliases – Above 3FF

Address
Block 1st Alias 2nd Alias 3rd Alias

000 – 03F 400 – 43F 800 – 83F C00 – C3F

040 – 07F 440 – 47F 840 – 87F C40 – C7F

080 – 0BF 480 – 4BF 880 – 8BF C80 – CBF

0C0 – 0FF 4C0 – 4FF 8C0 – 8FF CC0 – CFF

100 – 13F 500 – 53F 900 – 93F D00 – D3F

140 – 17F 540 – 57F 940 – 97F D40 – D7F

180 – 1BF 580 – 5BF 980 – 9BF D80 – DBF

Table 3-1. System I/O Addresses – Up to 3FF(Continued)

Address
Block

Addresses
 Used Description

Section 3. Troubleshooting

Troubleshooting 19

Troubleshooting

3.2. Placing a Support Call

Before you place a technical support call to Comtrol, please make sure that
you have the following information.

1C0 – 1FF 5C0 – 5FF 9C0 – 9FF DC0 – DFF

200 – 23F 600 – 63F A00 – A3F E00 – E3F

240 – 27F 640 – 67F A40 – A7F E40 – E7F

280 – 2BF 680 – 6BF A80 – ABF E80 – EBF

2C0 – 2FF 6C0 – 6FF AC0 – AFF EC0 – EFF

300 – 33F 700 – 73F B00 – B3F F00 – F3F

340 – 37F 740 – 77F B40 – B7F F40 – F7F

380 – 3BF 780 –7BF B80 – ABF F80 – FBF

3C0 – 3FF 7C0 – 7FF BC0 – BFF FC0 – FFF

Table 3-2. System I/O Address Aliases – Above 3FF (Continued)

Address
Block 1st Alias 2nd Alias 3rd Alias

Table 3-3. Support Call Information

Item Your System Information

Controller type 4-port, 8-port, 16-port, or
32-port model

Interface type DB25, RJ45, or RJ11

Mark your I/O address
selections

Operating system type and
release

Device driver release
number (to verify, view the
VERSION.DAT file)

PC make, model, and speed

List of other devices in the
PC and their addresses

Controller #1

Controller #3

ON

12345678

ON

12345678

Controller #2

Controller #4

ON

12345678

ON

12345678

20 Troubleshooting

Troubleshooting

Contact Comtrol using one of the following methods.
Corporate Headquarters:
• email: support@comtrol.com
• FAX: (612) 631-8117
• Phone: (612) 631-7654
• BBS: (612) 631-8310 (for device driver updates)
• FTP Site: ftp://ftp.comtrol.com
Note: The BBS supports modem speeds up to 28.8 Kbps with 8 bits, and no

parity.
Comtrol Europe:
• email: support@comtrol.co.uk
• FAX: +44 (0) 1 869-323-211
• Phone: +44 (0) 1 869-323-220
• BBS: +44 (0) 1 869-243-687

3.3. Retrieving Future Software Updates

Comtrol supports a BBS that provides software updates for our customers.
Note: The BBS supports modem speeds up to 14.4Kbps with 8 bits and no

parity.
BBS: (612) 631-8310

21 Troubleshooting

This appendix contains reference pages for the RocketPort API. Table A-4 lists
all of the API functions.

Table A-4. API Function Reference

Function Description

aaChangeModemState Changes the state of modem
output lines.

aaClose Closes a device.

aaEnPeriodicEvent Enables or disables dispatching of
the periodic event function.

aaExit Performs cleanup when exiting
from an application program.

aaFlush Flushes the transmit or receive
buffer, or both for a device.

aaGetCtlStatus Gets controller status.

aaGetModemStatus Gets a device’s modem status.

aaGetRxCount Gets the count of data bytes
available in the receive buffer.

aaGetRxStatus Gets the status of the device’s
receive buffer.

aaGetTxCount Gets the count of data bytes in the
transmit buffer waiting to be
transmitted.

aaInit Executes controller and API
initialization.

aaInstallCtrlCHandler Installs a handler for the CTRL+C
key interrupt.

aaInstallMdmChgEvent Installs an application level event
function to handle modem change
events.

aaInstallPeriodicEvent Installs a periodic application
level event function.

aaInstallRxEvent Installs an application level event
function to handle receive data
available events.

aaOpen Open a device for reading or
writing, or both.

aaRead Reads serial data from a device.

aaReadWithStatus Reads serial data and status from
a device.

aaReconfigure Reconfigures a device’s
communications parameters.

aaSendBreak Sends a break signal.

aaSetCloseDelay Sets the maximum time aaClose()
waits for a device’s transmit buffer
to drain before flushing the
transmit buffer and completing
the close.

aaWrite Writes serial data out to a device.

EvModemChange* Modem control input change event
function.

EvPeriodic* Periodic event function.

EvRxData* Receive data available event
function.

* These are not part of the API, but are part of the
application.

Table A-4. API Function Reference

Function Description

Appendix A. API Functions

22 API Functions

aaChangeModemState

aaChangeModemState

Changes the state of modem output lines.

aaChangeModemState(Dev,RTSState,DTRState)
int Dev Device number
int RTSState State of RTS line: ON, OFF, or

NOCHANGE
int DTRState State of DTR line: ON, OFF, or

NOCHANGE

int: NO_ERR if successful
ERR_DEV if device out of range

Function

Purpose

Call

Return

aaClose

Closes a device.

aaClose(Dev,ModemCtl)
int Dev Device number
unsigned char ModemCtl Modem control lines to turn

OFF, can be
COM_MDM_RTS or
COM_MDM_DTR. If the flag
is not set the state of the
modem line is not changed.

int: NO_ERR if successful
ERR_DEV if device number out of range
ERR_MDMCTL if invalid modem control flag
ERR_NOTOPEN if device not open

This function waits for the device’s transmit buffer to
drain before completing the close. The maximum wait
time defaults to CLOSE_TBEDLY, but can be changed
with the aaSetCloseDelay() function.

This function disables and enables interrupts.

Function

Purpose

Call

Return

Comments

Warning

23 API Functions

aaEnPeriodicEvent

aaEnPeriodicEvent

Enables or disables dispatching of the periodic event
function.

aaEnPeriodicEvent(State)
int State TRUE to enable dispatching of

the periodic event function,
FALSE to disable dispatching.

void

The periodic event function is called 274 times a
second. Once installed, the periodic event function is
not dispatched until it is enabled with the
aaEnPeriodicEvent() function. The aaEnPeriodicEvent()
function can also be used to disable dispatching of the
periodic event function.

The event function must be installed with
aaInstallPeriodicEvent() before enabling dispatching.

Function

Purpose

Call

Return

Comments

Warning

aaExit

Performs cleanup when exiting from an application
program.

aaExit()

void

This function does cleanup tasks required when
exiting from an application, such as halting controller
interrupts and restoring the IRQ vector used by the
controller.

Once aaInit() has been called, aaExit() must be called
before exiting the application program.

If the application program can be exited using the
CTRL+C or CTRL+BREAK keys, then the default DOS
CTRL+C handler must be replaced with a handler that
calls aaExit(). You can use the aaInstallCtrlCHandler()
function for this purpose.

Purpose

Call

Return

Comments

Warning

24 API Functions

aaFlush

aaFlush

Flushes the transmit or receive buffer, or both for a
device.

aaFlush(Dev,FlushFlags)
int Dev Device number
unsigned char FlushFlags COM_TX or COM_RX, or both

int: NO_ERR if successful
ERR_DEV if device is out of range
ERR_OPENTYPE if FlushFlags is out of range

Function

Purpose

Call

Return

aaGetCtlStatus

Gets controller status, including the first device
number on the controller and the number of devices on
the controller.

aaGetCtlStatus(CtlNum,FirstDevP,NumDevP)
int CtlNum Controller number to get status on.
int *FirstDevP Pointer to variable where first

device number on this controller
will be returned.

int *NumDevP Pointer to variable where number
of devices on this controller will be
returned

int: NO_ERR Controller is installed
ERR_NOCTL Controller is not installed

The CtlNum parameter identifies which RocketPort
controller to get the status of. Controllers are
numbered sequentially beginning with 0. Controller 0
will be the first controller whose address appears in the
configuration file given by the ROCKETCFG
environment variable. The contents of the FirstDevP
and NumDevP parameters are modified only if NO_ERR
is returned.

Function

Purpose

Call

Return

Comments

25 API Functions

aaGetModemStatus

aaGetModemStatus

Gets a device’s modem status.

aaGetModemStatus(Dev)
int Dev: Device number

unsigned char State of the modem control inputs
using the COM_MDM_CTS,
COM_MDM_DSR, and
COM_MDM_CD flags. If a flag is set
that modem line is ON, if a flag is
not set that modem line is OFF.

Function

Purpose

Call

Return

aaGetRxCount

Gets the count of data bytes available in the receive
buffer.

aaGetRxCount(Dev)
int Dev Device number

int: Receive byte count

Function

Purpose

Call

Return

26 API Functions

aaGetRxStatus

aaGetRxStatus

Gets the status of the device’s receive buffer.

aaGetRxStatus(Dev)
int Dev Device number

int: NO_ERR if there are no errors in the
device’s receive buffer

ERR_RX if there are errors in the
device’s receive buffer

ERR_DEV if device number out of range
ERR_NOTOPEN if device not open for receive

If there are errors in the device’s receive buffer, the
exact error and the errored data byte can be
determined using the aaReadWithStatus() function.

Function

Purpose

Call

Return

Comments

aaGetTxCount

Gets the count of data bytes in the transmit buffer
waiting to be transmitted.

aaGetTxCount(Dev)
int Dev Device number

int: Transmit byte count

Function

Purpose

Call

Return

27 API Functions

aaInit

aaInit

Executes controller and API initialization.

aaInit()

unsigned int
NO_ERR if no initialization

errors
ERR_ALLOCDEV if it can not

allocate device
structure

ERR_CTLINIT if controller
initialization
error

ERR_CHANINIT if channel
initialization
error

ERR_DEVSIZE if invalid number
of devices found

ERR_CTLSIZE if invalid number
of controllers
found

This function must be called once before calling any
other API function except aaInstallCtrlCHandler(). The
controller initialization parameters is obtained from
the configuration file given by environment variable
ROCKETCFG.
Once aaInit() has been called, aaExit() must be called
before exiting the application program.

If the application program can be exited using the
CTRL+C or CTRL+BREAK keys, then the default DOS
CTRL+C handler must be replaced with a handler that
calls aaExit(). You can use the aaInstallCtrlCHandler()
function can be used for this purpose.

Function

Purpose

Call

Return

Comments

Warning

aaInstallCtrlCHandler

Installs a handler for the CTRL+C key interrupt.

aaInstallCtrlCHandler()

void

This function replaces the existing CTRL+C (interrupt
23H) handler with a handler that performs the
following actions:
1. Calls aaExit().
2. Sets the carry flag to signal DOS to terminate the

application.
3. Executes a far return.
DOS restores the original CTRL+C handler when
terminating the application.
aaInstallCtrlCHandler() is the only API function that can
be called before calling aaInit(). If you plan on using the
aaInstallCtrlCHandler() function, we recommend calling
it either immediately before or immediately after the
call to the aaInit() function.
If you want different CTRL+C processing, you must
write and install your own custom CTRL+C handler.
Refer to the Microsoft MS-DOS Programmer's Reference
for more information. To aid in writing your own
handler, the source code for aaInstallCtrlCHandler() and
the handler it installs are given below:

void aaInstallCtrlCHandler(void)
{
dos_setvect(0x23,(void (interrupt far
*)())aaCtrlCIntHandler);
}

void far aaCtrlCIntHandler(void)
 {
 aaExit();
 asm stc;
}

If the application program can be exited using the
CTRL+C or CTRL+BREAK keys, then the default DOS
CTRL+C handler must be replaced with a handler that
calls aaExit(). You can use the aaInstallCtrlCHandler()
function for this purpose.

Function

Purpose

Call

Return

Comments

Warning

28 API Functions

aaInstallMdmChgEvent

aaInstallMdmChgEvent

Installs an application level event function to handle
modem change events.

aaInstallMdmChgEvent(EvFuncP)
void (*evFuncP)(Dev,unsigned char MdmChange,

unsigned char MdmState) Ptr to the event
function

void

See the EvModemChange() function for a description of
the event function.

The function installed here is called during an
interrupt service routine (ISR). Keep your code short
and remember that many standard C library calls do
not work in ISRs, such as printf().

If using the Microsoft C compiler, stack checking must
be disabled during the event function and any functions
called by the event function.
Stack checking can be turned off and on with:

#pragma check_stack(off)
#pragma check_stack(on)

Function

Purpose

Call

Return

Comments

Warning

aaInstallPeriodicEvent

Installs a periodic application level event function.

aaInstallPeriodicEvent(EvFuncP)
void (*EvFuncP)(void) Ptr to the event function.

void

The periodic event function is called 274 times a
second. Once installed, the periodic event function is
not dispatched until it is enabled with
aaEnPeriodicEvent(). The aaEnPeriodicEvent() function
can also be used to disable dispatching of the periodic
event function.
See the EvPeriodic() function for a description of the
event function.

The function installed here will be called during an
interrupt service routine (ISR). Keep your code short
and remember that many standard C library calls do
not work in ISRs, such as printf().

If using the Microsoft C compiler, stack checking must
be disabled during the event function and any functions
called by the event function.
Stack checking can be turned off and on with:

#pragma check_stack(off)
#pragma check_stack(on)

Function

Purpose

Call

Return

Comments

Comments

Warning

29 API Functions

aaInstallRxEvent

aaInstallRxEvent

Installs an application level event function to handle
receive data available events.

aaInstallRxEvent(EvFuncP)
void (*EvFuncP)(int Dev); Ptr to the event

function.

See the EvRxData() function for a description of the
event function.

void

The function installed here is called during an
interrupt service routine (ISR). Keep your code short
and remember that many standard C library calls do
not work in ISRs, such as printf().
If using the Microsoft C compiler, stack checking must
be disabled during the event function and any functions
called by the event function.
Stack checking can be turned off and on with:

#pragma check_stack(off)
#pragma check_stack(on)

Function

Purpose

Call

Comments

Return

Warning

aaOpen

Open a device for reading or writing, or both.

aaOpen(Dev,OpenType,Baud,Parity,DataBits,StopBits,Flow
Ctl,
DetectEn,ModemCtl)

int Dev Device Number
unsigned int OpenType COM_TX for transmit or

COM_RX for receive, or both.
unsigned char Baud One of the COM_BAUD_XX flags

defined in API.H.
unsigned char Parity One of: COM_PAR_NONE,

COM_PAR_EVEN,
COM_PAR_ODD.

unsigned char DataBits One of COM_DATABIT_7,
COM_DATABIT_8.

unsigned char StopBits One of COM_STOPBIT_1,
COM_STOPBIT_2.

unsigned int FlowCtl Flow control flag, can be
COM_FLOW_NONE or any
combination of
COM_FLOW_NONE,
COM_FLOW_IS,
COM_FLOW_OS,
COM_FLOW_IH,
COM_FLOW_OH,
COM_FLOW_OXANY.

unsigned int DetectEn Detection enable flags, can be
any combination of the
following:
COM_DEN_NONE No error

detection
enabled

COM_DEN_RDA Enable Rx
data
available
detection

CON_DEN_MDM Enable
modem
input
(DSR, CD,
or CTS)
change
detection

unsigned char ModemCtl Modem control lines to turn
ON, can be COM_MDM_RTS or

Function

Purpose

Call

30 API Functions

aaRead

COM_MDM_DTR, or both. If
the flag is not set the line is
OFF. If hardware flow control
is in use for a modem line, it’s
flag has no effect.

int: NO_ERR if successful
ERR_DEV if device number out of range
ERR_OPENTYPE if invalid open type flag
ERR_BAUDRATE if invalid baud rate flag
ERR_PAR if invalid parity bits flag
ERR_DATAB if invalid data bits flag
ERR_STOPB if invalid stop bits flag
ERR_FLOW if invalid flow control bits flag
ERR_DETECT if invalid detect enable flag
ERR_MDMCTL if invalid modem control flag
ERR_ALREADYOPEN if device already open error
flag

If this device has been opened previously and is still
open, this function fails and returns an
ERR_ALREADYOPEN error.

This function disables and enables interrupts.

Return

Comments

Warning

aaRead

Reads serial data from a device.

aaRead(Dev,Cnt,Buf)
int Dev Device number
int Cnt Maximum number of bytes

that can be read
unsigned char *Buf Buffer to store the data in

int: Number of bytes readif successful
0 if no data available to be read
ERR_DEV if device number out of range
ERR_NOTOPEN if device not open for receive

This function reads data from the device’s receive
buffer without checking for receive errors. If receive
error information is needed, use the aaGetRxStatus()
and aaReadWithStatus() functions.

The Cnt parameter should not be greater than the size
of the Buf receive buffer.

Function

Purpose

Call

Return

Comments

Warning

31 API Functions

aaReadWithStatus

aaReadWithStatus

Reads serial data and status from a device.

aaReadWithStatus(Dev,Cnt,Buf)
int Dev Device number
int Cnt Max number of bytes that can

be read
unsigned int *Buf Buffer to store the data and

status. The low byte of each
array element in Buf contains
the data byte, and the high byte
contains the status for that data
byte. The status may be 0
indicating no error, or any
combination of the following
flags:
ERR_PARITY parity error
ERR_OVRRUN receiver over

run error
ERR_FRAME framing error
ERR_BREAK break

int: Number of bytes read if successful
0 if no data available to be
read
ERR_DEV if device number out of
range
ERR_NOTOPEN if device not open for receive

The Cnt parameter should not be greater than the
number of array elements in the Buf receive buffer.

Function

Purpose

Call

Return

Warning

aaReconfigure

Reconfigures a device’s communications parameters.

aaReconfigure(Dev,Baud,Parity,DataBits,StopBits,FlowCtl,Detect
En);

int dev; Device Number
unsigned char Baud One of the baud rate flags

defined in API.H.
unsigned char Parity One of: COM_PAR_NONE,

COM_PAR_EVEN,
COM_PAR_ODD.

unsigned char DataBits One of COM_DATABIT_7,
COM_DATABIT_8.

unsigned char StopBits One of COM_STOPBIT_1,
COM_STOPBIT_2.

unsigned int FlowCtl Flow control flag, can be
COM_FLOW_NONE or any
combination of:
COM_FLOW_IS,
COM_FLOW_OS,
COM_FLOW_IH,
COM_FLOW_OH,
COM_FLOW_OXANY.

unsigned int DetectEn Detection enable flags, can be
any combination of the
following:
COM_DEN_NONE No error

detection
enabled

COM_DEN_
RDA
Enable Rx
data
available
detection

COM_DEN_MDM Enable
modem
input
(DSR,CD, or
CTS)
change
detection

int: NO_ERR if successful
ERR_DEV if device number out of range
ERR_BAUDRATE if invalid baud rate flag

Function

Purpose

Call

Return

32 API Functions

aaSendBreak

ERR_PAR if invalid parity bits flag
ERR_DATAB if invalid data bits flag
ERR_STOPB if invalid stop bits flag
ERR_FLOW if invalid flow control bits flag
ERR_DETECT if invalid detect enable flag
ERR_NOTOPEN if device not open error flag

This function disables and enables interrupts.Warning

aaSendBreak

Sends a break signal.

aaSendBreak(Dev,Time)
int Dev Device number
int Time Time in milliseconds to send the

break

int: NO_ERR if successful
ERR_DEV if device is out of range.

Function

Purpose

Call

Return

33 API Functions

aaSetCloseDelay

aaSetCloseDelay

Sets the maximum time aaClose() waits for a device’s
transmit buffer to drain before flushing the transmit
buffer and completing the close.

aaSetCloseDelay(Dev,MaxDelay)
int Dev Device number
int MaxDelay Maximum time aaClose will

wait for a device’s transmit
buffer to drain in seconds. For
no delay use 0. Maximum value
is 32,767 seconds.

int: NO_ERR if successful.
ERR_DEV if device number out of range.

The device does not need to be open to execute this
function.

Function

Purpose

Call

Return

Comments

aaWrite

Writes serial data out a device.

aaWrite(Dev,Cnt,Buf)
int Dev: Device number
int Cnt: Number of bytes to be

written
unsigned char *Buf: Buffer of data to write

int: Number of bytes written if successful
0 if no data bytes written
ERR_DEV if dev number out of
range
ERR_NOTOPEN if dev not open for
transmit

The Cnt parameter should not be greater than the size
of the Buf transmit buffer.

Function

Purpose

Call

Return

Warning

34 API Functions

EvModemChange

EvModemChange

Application modem input change event function

EvModemChange(Dev,unsigned char
MdmChange,unsigned char
MdmState)

int Dev Device number
unsigned char MdmChange Modem input lines which

changed. Can be any
combination of the
flags:
COM_MDM_DSR,
COM_MDM_CTS, or
COM_MDM_CD.
If a flag is set that modem
line is changed, if a flag is
not set that modem line did
not change.

unsigned char MdmState Current state of the modem
inputs. Can be any
combination of the
COM_MDM_CTS,
COM_MDM_DSR, and
COM_MDM_CD flags. If a
flag is set that modem line
is ON, if a flag is not set
that modem line is OFF.

void
This function is not part of the API, it must be written
by the developer as part of the application program.
The function name EvModemChange is an example
name only, this event function can be given any name
desired.
This function is not called directly by the application.
Instead, it is dispatched by the API’s internal ISR
(interrupt service routine) when it detects that receive
data is available. Before this function will be
dispatched it must be installed with
aaInstallMdmChgEvent(), and modem input change
detection must be enabled. Detection is enabled using
the DetectEn parameter of aaOpen() or aaReconfigure().
The function installed here is called during an
interrupt service routine (ISR). Keep your code short
and remember that many standard C library calls do

Function

Purpose

Call

Return

Comments

Warning

not work in ISRs, such as printf().
If using the Microsoft C compiler, stack checking must
be disabled during the event function and any functions
called by the event function.
Stack checking can be turned off and on with:

#pragma check_stack(off)
#pragma check_stack(on)

35 API Functions

EvPeriodic

EvPeriodic

Application periodic event function

EvPeriodic()

void

This function is not part of the API, it must be written
by the developer as part of the application program.
The function name EvPeriodic is an example name only,
this event function can be given any name desired.
This function is not called directly by the application.
Instead it is dispatched by the API’s internal ISR
(interrupt service routine) when it detects that receive
data is available. Before this function will be
dispatched it must be installed with
aaInstallPeriodicEvent(), and periodic events must be
enabled with aaEnPeriodicEvent().
Once installed and enabled, the periodic event function
is called 274 times a second regardless of the state of
controller.
The function installed here is called during an
interrupt service routine (ISR). Keep your code short
and remember that many standard C library calls do
not work in ISRs, such as printf().

If using the Microsoft C compiler, stack checking must
be disabled during the event function and any functions
called by the event function.
Stack checking can be turned off and on with:

#pragma check_stack(off)
#pragma check_stack(on)

Function

Purpose

Call

Return

Warning

Warning

EvRxData

Application receive data available event function

EvRxData(Dev)
int Dev: Device number

void

This function is not part of the API, it must be written
by the developer as part of the application program.
The function name EvRxData is an example name only,
this event function can be given any name desired.
This function is not called directly by the application.
Instead, it is dispatched by the API’s internal ISR
(interrupt service routine) when it detects that receive
data is available. Before this function will be
dispatched it must be installed with aaInstallRxEvent(),
and receive data available detection must be enabled.
Detection is enabled using the DetectEn parameter of
aaOpen() or aaReconfigure().
The function installed here is called during an
interrupt service routine (ISR). Keep your code short
and remember that many standard C library calls do
not work in ISRs, such as printf().

If using the Microsoft C compiler, stack checking must
be disabled during the event function and any functions
called by the event function.
Stack checking can be turned off and on with:

#pragma check_stack(off)
#pragma check_stack(on)

Function

Purpose

Call

Return

Warning

Warning

36 Troubleshooting

This appendix contains a copy of the \ROCKET\SAMPLE\DBUF.C file for your
convenience.

File: DBUF.C
Project: RocketPort DOS API
Purpose: Double buffering sample program
Comments: This program shows how to use the periodic event function to

double buffer Tx data, and how to use the receive event function
to double buffer Rx data. The double buffering is done in a pair of
queues for each device, these are defined in the Q_T structure.

Operation: Install a loopback plug on port 0. At the DOS command line type
"DBUF." Each time transmit data is enqueued to the device 0, the
Tx buffer the count is displayed. Each time data is dequeued from
the device 0; the Rx buffer, the count, and Rx string are
displayed.

**/
#include <stdio.h>
#include <process.h>
#include <stdlib.h>
#include <mem.h>
#include <string.h>
#include <conio.h>
#include <dos.h>
#include "api.h"

#define NUMDEV 8 /* num devices this app supports */
#define TXBUF_SIZE 1024 /* transmit buffer size */
#define RXBUF_SIZE 1024 /* receive buffer size */

void EvRxData(int); /* function prototypes */
void EvPeriodic(void);
int EnqTxData(int,unsigned char *,int);
int DeqRxData(int,unsigned char *,int);

typedef struct‘ /* transmit and receive queues */
{
 int OpenTx; /* TRUE if device open for Tx */
 int TxIn; /* index to add Tx data at */

 int TxOut; /* index to remove Tx data at */
 unsigned char TxBuf[TXBUF_SIZE]; /* buffer for Tx data */
 int RxIn; /* index to add Rx data at */
 int RxOut; /* index to remove Rx data at */
 unsigned char RxBuf[RXBUF_SIZE]; /* buffer to Rx data */
} Q_T;
Q_T q[NUMDEV];/* Tx and Rx queues for each dev */

/**
Function: main
Purpose: Initialization, test Tx and Rx double buffering.
*/
main()
{
 int Dev;
 int Err;
 unsigned char Buf[100];
 int Cnt;

 /* Initialize controller */
 aaInstallCtrlCHandler();
 if((Err = aaInit()) != NO_ERR)
 {
 printf("Initialization Failure %x\n",Err);
 aaExit();
 exit(1);
 }

 /* Clear queues */
 for(Dev = 0;Dev < NUMDEV;Dev++)
 {
 q[Dev].OpenTx = FALSE;
 q[Dev].TxIn = 0;
 q[Dev].TxOut = 0;
 q[Dev].RxIn = 0;
 q[Dev].RxOut = 0;
 }

 /* Set up application event functions */
 aaInstallRxEvent(EvRxData);
 aaInstallPeriodicEvent(EvPeriodic);

Appendix B. Double Buffering Example

Troubleshooting 37

Troubleshooting

 aaEnPeriodicEvent(TRUE);

 /* Test background transmit and receive on device 0. A loopback
 plug can be installed on device 0 so that all transmitted data is
 received on the same device. */
 printf("To stop test press any key\n");
 if((Err = aaOpen(0,
 COM_TX | COM_RX,
 COM_BAUD_38400,
 COM_PAR_NONE,
 COM_DATABIT_8,
 COM_STOPBIT_1,
 COM_FLOW_NONE,
 COM_DEN_RDA,
 COM_MDM_RTS | COM_MDM_DTR)) != 0)
 {
 printf("Open Failure - Device %d, Error %d\n","0",Err);
 aaExit();
 exit(1);
 }
 q[0].OpenTx = TRUE;

 while(!kbhit()) /* test loop */
 {
 Cnt = EnqTxData(0,
 (unsigned char *)"This string is being written to device 0",
 40);
 if(Cnt > 0)
 printf("Tx %d bytes\n",Cnt);

 delay(100); /* wait for loopback data */
 Cnt = DeqRxData(0,Buf,RXBUF_SIZE-1);

 /* dequeue all Rx data available */
 Buf[Cnt] = NULL; /* null terminate received string */
 if(Cnt > 0)
 printf("Rx %d bytes, String = %s\n",Cnt,Buf);
 }
 getch();

 /* Exit application */
 q[0].OpenTx = FALSE;
 aaClose(0,COM_MDM_RTS | COM_MDM_DTR);
 aaExit();
 return(0);
}

/**
Function: EnqTxData
Purpose: Add data to a Tx queue.
Call: EnqTxData(Dev,Buf,Cnt)

int Dev; Device number
unsigned char *Buf; Buffer with data to add
int Cnt; Count of bytes to add

Return: int: Number of bytes added to Tx queue
*/
int EnqTxData(int Dev,unsigned char *Buf,int Cnt)
{
 int i; /* balance of bytes to copy after q wrap */
 int NumOpen; /* num bytes open in Tx buffer */
 int In; /* In index into Tx buffer */

 asm cli; /* no interrupts until done, do not want
 periodic event function modifying q
 while we are working on it */

 In = q[Dev].TxIn; /* local copy of In index */

 /* Get number bytes open in Tx buffer */
 if((NumOpen = q[Dev].TxOut - In - 1) < 0)
 NumOpen += TXBUF_SIZE; /* adjust for q wrap */
 if(NumOpen > Cnt)
 NumOpen = Cnt; /* don't move more than are incoming */
 if(NumOpen == 0)
 return(0); /* no room in Tx buffer */
 i = NumOpen - (TXBUF_SIZE - In); /* i = whats left after wrap around */
 if (i < 0)
 i = 0;

 /* Copy to end of Tx buffer */
 memcpy(&q[Dev].TxBuf[In],Buf,NumOpen - i);

 /* Update In index, pnt to beginning of buff if already at end of it */
 In = (In + (NumOpen - i)) % TXBUF_SIZE;

 /* Copy the rest of the buffer, if any left */
 if (i != 0)
 {
 memcpy(q[Dev].TxBuf,&Buf[NumOpen - i],i);
 In = i;
 }

38 Troubleshooting

Troubleshooting

 /* Update Tx queue In index */
 q[Dev].TxIn = In;
 asm sti; /* enable interrupts */
 return(NumOpen);
}

/**
Function: DeqRxData
Purpose: Remove data from a Rx queue.
Call: DeqRxData(Dev,Buf,Cnt)

int Dev; Device number
unsigned char *Buf;

Buffer takes data removed from Rx queue.
 int Cnt; Count of bytes to remove
Return: int: Number of bytes removed from Rx queue
*/
int DeqRxData(int Dev,unsigned char *Buf,int Cnt)
{
 int i; /* balance of bytes to copy after q wrap */
 int Out; /* Out index into Rx buffer */
 int BCnt; /* count of bytes copied */

 asm cli; /* no interrupts until done, do not want
 periodic event function modifying q
 while we are working on it */

 Out = q[Dev].RxOut;/* local copy of Out index */

 /* Get number of bytes in Rx buffer */
 if((BCnt = q[Dev].RxIn - Out) < 0)
 BCnt += RXBUF_SIZE; /* adjust for queue wrap */
 else if(BCnt == 0)
 return(BCnt); /* nothing in Rx buffer */
 if(Cnt < BCnt)
 BCnt = Cnt; /* do not move more than asked for */
 i = BCnt - (RXBUF_SIZE - Out); /* i = whats left after wrap around */
 if(i < 0)
 i = 0;

 /* Copy to end of Rx buffer */
 memcpy(Buf,&q[Dev].RxBuf[Out],BCnt - i);

 /* Updata Out index, point to beginning of buffer if already at end of it */
 Out = (Out + (BCnt - i)) % RXBUF_SIZE;

 /* Copy the rest of the buffer, if any left */
 if (i != 0)
 {
 memcpy(&Buf[BCnt - i],q[Dev].RxBuf,i);
 Out = i;
 }

 /* Update Rx queue Out index */
 q[Dev].RxOut = Out;
 asm sti; /* enable interrupts */
 return(BCnt);
}

/**
Function: EvRxData
Purpose: Receive event function, read data from a serial device

and add it to a Rx queue.
Call EvRxData(Dev)

int Dev; Device number
Return: void
*/
void EvRxData(int Dev) /* receive event function */
{
 int i; /* balance of bytes to copy after q wrap */
 int NumOpen; /* num bytes open in Rx buffer */
 int In; /* In index into Rx buffer */
 int Cnt; /* total count of bytes read */

 In = q[Dev].RxIn; /* local copy of In index */

 /* Get number bytes open in Rx buffer */
 if((NumOpen = q[Dev].RxOut - In - 1) < 0)
 NumOpen += RXBUF_SIZE; /* adjust for q wrap */
 if(NumOpen == 0)
 return; /* no room in Rx buffer */
 i = NumOpen - (RXBUF_SIZE - In); /* i = whats left after wrap around */
 if (i < 0)
 i = 0;

 /* Read data in up to end of Rx buffer */
 Cnt = aaRead(Dev,NumOpen - i,&q[Dev].RxBuf[In]);

 /* Update In index, point to beginning of buffer if already at end of it */
 In = (In + Cnt) % RXBUF_SIZE;

Troubleshooting 39

Troubleshooting

 /* Read more data if any room left at front of buffer and if device wasn't
 already emptied */
 if((i != 0) &&
 (Cnt == NumOpen - i))
 {
 In = aaRead(Dev,i,q[Dev].RxBuf); /* read balance of data */
 }

 /* Update Rx queue In index */
 q[Dev].RxIn = In;
}

/**
Function: EvPeriodic
Purpose: Periodic event function, remove data from Tx queues

 and write it to serial devices.
Call: EvPeriodic(void)
Return: void
*/
void EvPeriodic(void)
{
 int Dev; /* device number */
 int i; /* balance of bytes to copy after q wrap */
 int Out; /* Out index into Tx buffer */
 int Cnt; /* number of bytes to write */
 int WCnt; /* number of bytes actually written */

 for(Dev = 0;Dev < NUMDEV;Dev++) /* check all devs for data to Tx */
 {
 if(!q[Dev].OpenTx) /* device not open for Tx */
 continue;
 Out = q[Dev].TxOut; /* local copy of Out index */

 /* Get number of bytes in Tx buffer */
 if((Cnt = q[Dev].TxIn - Out) < 0)
 Cnt += TXBUF_SIZE; /* adjust for queue wrap */
 else if(Cnt == 0)
 return; /* nothing in Tx buffer */
 i = Cnt - (TXBUF_SIZE - Out); /* i = whats left after wrap around */
 if(i < 0)
 i = 0;

 /* Write data to end of Tx buffer */
 WCnt = aaWrite(Dev,Cnt - i,&q[Dev].TxBuf[Out]);

 /* Updata Out index, point to start of buffer if already at end of it */
 Out = (Out + WCnt) % TXBUF_SIZE;

 /* Write more data if any left at front of buffer and if device wasn't
 already filled */
 if((i != 0) &&
 (WCnt == Cnt - i))
 {
 Out = aaWrite(Dev,i,q[Dev].TxBuf); /* write balance of data */
 }

 /* Update Tx queue Out index */
 q[Dev].TxOut = Out;
 }
}

